704 research outputs found

    Neoclassical Theory of Elementary Charges with Spin of 1/2

    Full text link
    We advance here our neoclassical theory of elementary charges by integrating into it the concept of spin of 1/2. The developed spinorial version of our theory has many important features identical to those of the Dirac theory such as the gyromagnetic ratio, expressions for currents including the spin current, and antimatter states. In our theory the concepts of charge and anticharge relate naturally to their "spin" in its rest frame in two opposite directions. An important difference with the Dirac theory is that both the charge and anticharge energies are positive whereas their frequencies have opposite signs

    Geometric Algebra Model of Distributed Representations

    Full text link
    Formalism based on GA is an alternative to distributed representation models developed so far --- Smolensky's tensor product, Holographic Reduced Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced by geometric products, interpretable in terms of geometry which seems to be the most natural language for visualization of higher concepts. This paper recalls the main ideas behind the GA model and investigates recognition test results using both inner product and a clipped version of matrix representation. The influence of accidental blade equality on recognition is also studied. Finally, the efficiency of the GA model is compared to that of previously developed models.Comment: 30 pages, 19 figure

    Cartoon Computation: Quantum-like computing without quantum mechanics

    Get PDF
    We present a computational framework based on geometric structures. No quantum mechanics is involved, and yet the algorithms perform tasks analogous to quantum computation. Tensor products and entangled states are not needed -- they are replaced by sets of basic shapes. To test the formalism we solve in geometric terms the Deutsch-Jozsa problem, historically the first example that demonstrated the potential power of quantum computation. Each step of the algorithm has a clear geometric interpetation and allows for a cartoon representation.Comment: version accepted in J. Phys.A (Letter to the Editor

    Lightlike infinity in GCA models of Spacetime

    Full text link
    This paper discusses a 7 dimensional conformal geometric algebra model for spacetime based on the notion that spacelike and timelike infinities are distinct. I show how naturally of the dimensions represents the lightlike infinity and appears redundant in computations, yet usefull in interpretationComment: 12 page

    Revisiting Digital Straight Segment Recognition

    Full text link
    This paper presents new results about digital straight segments, their recognition and related properties. They come from the study of the arithmetically based recognition algorithm proposed by I. Debled-Rennesson and J.-P. Reveill\`es in 1995 [Debled95]. We indeed exhibit the relations describing the possible changes in the parameters of the digital straight segment under investigation. This description is achieved by considering new parameters on digital segments: instead of their arithmetic description, we examine the parameters related to their combinatoric description. As a result we have a better understanding of their evolution during recognition and analytical formulas to compute them. We also show how this evolution can be projected onto the Stern-Brocot tree. These new relations have interesting consequences on the geometry of digital curves. We show how they can for instance be used to bound the slope difference between consecutive maximal segments

    Research Project as Boundary Object: negotiating the conceptual design of a tool for International Development

    Get PDF
    This paper reflects on the relationship between who one designs for and what one designs in the unstructured space of designing for political change; in particular, for supporting “International Development” with ICT. We look at an interdisciplinary research project with goals and funding, but no clearly defined beneficiary group at start, and how amorphousness contributed to impact. The reported project researched a bridging tool to connect producers with consumers across global contexts and show players in the supply chain and their circumstances. We explore how both the nature of the research and the tool’s function became contested as work progressed. To tell this tale, we invoke the idea of boundary objects and the value of tacking back and forth between elastic meanings of the project’s artefacts and processes. We examine the project’s role in India, Chile and other arenas to draw out ways that it functioned as a catalyst and how absence of committed design choices acted as an unexpected strength in reaching its goals

    Analyzing three-player quantum games in an EPR type setup

    Get PDF
    We use the formalism of Clifford Geometric Algebra (GA) to develop an analysis of quantum versions of three-player non-cooperative games. The quantum games we explore are played in an Einstein-Podolsky-Rosen (EPR) type setting. In this setting, the players' strategy sets remain identical to the ones in the mixed-strategy version of the classical game that is obtained as a proper subset of the corresponding quantum game. Using GA we investigate the outcome of a realization of the game by players sharing GHZ state, W state, and a mixture of GHZ and W states. As a specific example, we study the game of three-player Prisoners' Dilemma.Comment: 21 pages, 3 figure

    N-player quantum games in an EPR setting

    Get PDF
    The NN-player quantum game is analyzed in the context of an Einstein-Podolsky-Rosen (EPR) experiment. In this setting, a player's strategies are not unitary transformations as in alternate quantum game-theoretic frameworks, but a classical choice between two directions along which spin or polarization measurements are made. The players' strategies thus remain identical to their strategies in the mixed-strategy version of the classical game. In the EPR setting the quantum game reduces itself to the corresponding classical game when the shared quantum state reaches zero entanglement. We find the relations for the probability distribution for NN-qubit GHZ and W-type states, subject to general measurement directions, from which the expressions for the mixed Nash equilibrium and the payoffs are determined. Players' payoffs are then defined with linear functions so that common two-player games can be easily extended to the NN-player case and permit analytic expressions for the Nash equilibrium. As a specific example, we solve the Prisoners' Dilemma game for general N2 N \ge 2 . We find a new property for the game that for an even number of players the payoffs at the Nash equilibrium are equal, whereas for an odd number of players the cooperating players receive higher payoffs.Comment: 26 pages, 2 figure
    corecore