4,348 research outputs found
350 Micron Observations of Ultraluminous Infrared Galaxies at Intermediate Redshifts
We present 350micron observations of 36 ultraluminous infrared galaxies
(ULIRGs) at intermediate redshifts (0.089 <= z <= 0.926) using the
Submillimeter High Angular Resolution Camera II (SHARC-II) on the Caltech
Submillimeter Observatory (CSO). In total, 28 sources are detected at S/N >= 3,
providing the first flux measurements longward of 100micron for a statistically
significant sample of ULIRGs in the redshift range of 0.1 < z < 1.0. Combining
our 350micron flux measurements with the existing IRAS 60 and 100micron data,
we fit a single-temperature model to the spectral energy distribution (SED),
and thereby estimate dust temperatures and far-IR luminosities. Assuming an
emissivity index of beta = 1.5, we find a median dust temperature and far-IR
luminosity of Td = 42.8+-7.1K and log(Lfir/Lsolar) = 12.2+-0.5, respectively.
The far-IR/radio correlation observed in local star-forming galaxies is found
to hold for ULIRGs in the redshift range 0.1 < z < 0.5, suggesting that the
dust in these sources is predominantly heated by starbursts. We compare the
far-IR luminosities and dust temperatures derived for dusty galaxy samples at
low and high redshifts with our sample of ULIRGs at intermediate redshift. A
general Lfir-Td relation is observed, albeit with significant scatter, due to
differing selection effects and variations in dust mass and grain properties.
The relatively high dust temperatures observed for our sample compared to that
of high-z submillimeter-selected starbursts with similar far-IR luminosities
suggest that the dominant star formation in ULIRGs at moderate redshifts takes
place on smaller spatial scales than at higher redshifts.Comment: (24 pages in preprint format, 1 table, 7 figures, accepted for
publication in ApJ
Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades
The equations of motion are developed by two complementary methods, Hamilton's principle and the Newtonian method. The resulting equations are valid to second order for long, straight, slender, homogeneous, isotropic beams undergoing moderate displacements. The ordering scheme is based on the restriction that squares of the bending slopes, the torsion deformation, and the chord/radius and thickness/radius ratios are negligible with respect to unity. All remaining nonlinear terms are retained. The equations are valid for beams with mass centroid axis and area centroid (tension) axis offsets from the elastic axis, nonuniform mass and stiffness section properties, variable pretwist, and a small precone angle. The strain-displacement relations are developed from an exact transformation between the deformed and undeformed coordinate systems. These nonlinear relations form an important contribution to the final equations. Several nonlinear structural and inertial terms in the final equations are identified that can substantially influence the aeroelastic stability and response of hingeless helicopter rotor blades
A Multi-Wavelength Study of Sgr A*: The Role of Near-IR Flares in Production of X-ray, Soft -ray and Sub-millimeter Emission
(abridged) We describe highlights of the results of two observing campaigns
in 2004 to investigate the correlation of flare activity in Sgr A* in different
wavelength regimes, using a total of nine ground and space-based telescopes. We
report the detection of several new near-IR flares during the campaign based on
{\it HST} observations. The level of near-IR flare activity can be as low as
mJy at 1.6 m and continuous up to about 40% of the total
observing time. Using the NICMOS instrument on the {\it HST}, the {\it
XMM-Newton} and CSO observatories, we also detect simultaneous bright X-ray and
near-IR flare in which we observe for the first time correlated substructures
as well as simultaneous submillimeter and near-IR flaring. X-ray emission is
arising from the population of near-IR-synchrotron-emitting relativistic
particles which scatter submillimeter seed photons within the inner 10
Schwarzschild radii of Sgr A* up to X-ray energies. In addition, using the
inverse Compton scattering picture, we explain the high energy 20-120 keV
emission from the direction toward Sgr A*, and the lack of one-to-one X-ray
counterparts to near-IR flares, by the variation of the magnetic field and the
spectral index distributions of this population of nonthermal particles. In
this picture, the evidence for the variability of submillimeter emission during
a near-IR flare is produced by the low-energy component of the population of
particles emitting synchrotron near-IR emission. Based on the measurements of
the duration of flares in near-IR and submillimeter wavelengths, we argue that
the cooling could be due to adiabatic expansion with the implication that flare
activity may drive an outflow.Comment: 48 pages, 12 figures, ApJ (in press
Nonlinear Dynamics of a Helicopter Model in Ground Resonance
An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis
Far Infrared Variability of Sagittarius A*: 25.5 Hours of Monitoring with
Variable emission from Sgr~A*, the luminous counterpart to the super-massive
black hole at the center of our Galaxy, arises from the innermost portions of
the accretion flow. Better characterization of the variability is important for
constraining models of the low-luminosity accretion mode powering Sgr~A*, and
could further our ability to use variable emission as a probe of the strong
gravitational potential in the vicinity of the
black hole. We use the \textit{Herschel}
Spectral and Photometric Imaging Receiver (SPIRE) to monitor Sgr~A* at
wavelengths that are difficult or impossible to observe from the ground. We
find highly significant variations at 0.25, 0.35, and 0.5 mm, with temporal
structure that is highly correlated across these wavelengths. While the
variations correspond to 1% changes in the total intensity in the
\textit{Herschel} beam containing Sgr~A*, comparison to independent,
simultaneous observations at 0.85 mm strongly supports the reality of the
variations. The lowest point in the light curves, 0.5 Jy below the
time-averaged flux density, places a lower bound on the emission of Sgr~A* at
0.25 mm, the first such constraint on the THz portion of the SED. The
variability on few hour timescales in the SPIRE light curves is similar to that
seen in historical 1.3 mm data, where the longest time series is available, but
the distribution of variations in the sub-mm do not show a tail of
large-amplitude variations seen at 1.3 mm. Simultaneous X-ray photometry from
XMM-Newton shows no significant variation within our observing period, which
may explain the lack of very large variations if X-ray and submillimeter flares
are correlated.Comment: Accepted for publication in Ap
Submillimeter Imaging of NGC 891 with SHARC
The advent of submillimeter wavelength array cameras operating on large
ground-based telescopes is revolutionizing imaging at these wavelengths,
enabling high-resolution submillimeter surveys of dust emission in star-forming
regions and galaxies. Here we present a recent 350 micron image of the edge-on
galaxy NGC 891, which was obtained with the Submillimeter High Angular
Resolution Camera (SHARC) at the Caltech Submillimeter Observatory (CSO). We
find that high resolution submillimeter data is a vital complement to shorter
wavelength satellite data, which enables a reliable separation of the cold dust
component seen at millimeter wavelengths from the warmer component which
dominates the far-infrared (FIR) luminosity.Comment: 4 pages LaTeX, 2 EPS figures, with PASPconf.sty; to appear in
"Astrophysics with Infrared Surveys: A Prelude to SIRTF
Flaring Activity of Sgr A*: Expanding Hot Blobs
Sgr A* is considered to be a massive black hole at the Galactic center and is
known to be variable in radio, millimeter, near-IR and X-rays. Recent
multi-wavelength observing campaigns show a simultaneous X-ray and near-IR
flare, as well as sub-millimeter and near-IR flares from Sgr A*. The flare
activity is thought to be arising from the innermost region of Sgr A*. We have
recently argued that the duration of flares in near-IR and submillimeter
wavelengths implies that the burst of emission expands and cools on a dynamical
time scale before the flares leave Sgr A*. The detection of radio flares with a
time delay in the range of 20 and 40 minutes between 7 and 12mm peak emission
implies adiabatic expansion of a uniform, spherical hot blob due to flare
activity. We suspect that this simple outflow picture shows some of the
characteristics that are known to take place in microquasars, thus we may learn
much from comparative study of Sgr A* and its environment vs. microquasars.Comment: 10 pages, 5 figures, to be published in IV Microquasar Workshop:
Microquasars and Beyond, September 18-22 2006, Como, Ital
Scanamorphos: a map-making software for Herschel and similar scanning bolometer arrays
Scanamorphos is one of the public softwares available to post-process scan
observations performed with the Herschel photometer arrays. This
post-processing mainly consists in subtracting the total low-frequency noise
(both its thermal and non-thermal components), masking high-frequency artefacts
such as cosmic ray hits, and projecting the data onto a map. Although it was
developed for Herschel, it is also applicable with minimal adjustment to scan
observations made with some other imaging arrays subjected to low-frequency
noise, provided they entail sufficient redundancy; it was successfully applied
to P-Artemis, an instrument operating on the APEX telescope. Contrary to
matrix-inversion softwares and high-pass filters, Scanamorphos does not assume
any particular noise model, and does not apply any Fourier-space filtering to
the data, but is an empirical tool using purely the redundancy built in the
observations -- taking advantage of the fact that each portion of the sky is
sampled at multiple times by multiple bolometers. It is an interactive software
in the sense that the user is allowed to optionally visualize and control
results at each intermediate step, but the processing is fully automated. This
paper describes the principles and algorithm of Scanamorphos and presents
several examples of application.Comment: This is the final version as accepted by PASP (on July 27, 2013). A
copy with much better-quality figures is available on
http://www2.iap.fr/users/roussel/herschel
Wind prediction enhancement by supplementing measurements with numerical weather prediction now-casts
This paper explores how the accuracy of short-term prediction of wind speed and direction can be enhanced by considering additional spatial measurements. To achieve this, two different data sets have been used: (i) wind speed and direction measurements taken over 23 Met Office weather stations distributed across the UK, and (ii) outputs from the Consortium for Small-scale Modelling (COSMO) numerical weather model on a grid of points covering the UK and the surrounding sea. A multivariate complex valued adaptive prediction filter is applied to these data. The study provides an assessment of how well the proposed model can predict the data one hour ahead and what improvements can be accomplished by using additional data from the COSMO model
- …
