780 research outputs found
Timed Parity Games: Complexity and Robustness
We consider two-player games played in real time on game structures with
clocks where the objectives of players are described using parity conditions.
The games are \emph{concurrent} in that at each turn, both players
independently propose a time delay and an action, and the action with the
shorter delay is chosen. To prevent a player from winning by blocking time, we
restrict each player to play strategies that ensure that the player cannot be
responsible for causing a zeno run. First, we present an efficient reduction of
these games to \emph{turn-based} (i.e., not concurrent) \emph{finite-state}
(i.e., untimed) parity games. Our reduction improves the best known complexity
for solving timed parity games. Moreover, the rich class of algorithms for
classical parity games can now be applied to timed parity games. The states of
the resulting game are based on clock regions of the original game, and the
state space of the finite game is linear in the size of the region graph.
Second, we consider two restricted classes of strategies for the player that
represents the controller in a real-time synthesis problem, namely,
\emph{limit-robust} and \emph{bounded-robust} winning strategies. Using a
limit-robust winning strategy, the controller cannot choose an exact
real-valued time delay but must allow for some nonzero jitter in each of its
actions. If there is a given lower bound on the jitter, then the strategy is
bounded-robust winning. We show that exact strategies are more powerful than
limit-robust strategies, which are more powerful than bounded-robust winning
strategies for any bound. For both kinds of robust strategies, we present
efficient reductions to standard timed automaton games. These reductions
provide algorithms for the synthesis of robust real-time controllers
Real-Time Synthesis is Hard!
We study the reactive synthesis problem (RS) for specifications given in
Metric Interval Temporal Logic (MITL). RS is known to be undecidable in a very
general setting, but on infinite words only; and only the very restrictive BRRS
subcase is known to be decidable (see D'Souza et al. and Bouyer et al.). In
this paper, we precise the decidability border of MITL synthesis. We show RS is
undecidable on finite words too, and present a landscape of restrictions (both
on the logic and on the possible controllers) that are still undecidable. On
the positive side, we revisit BRRS and introduce an efficient on-the-fly
algorithm to solve it
Testing Reactive Probabilistic Processes
We define a testing equivalence in the spirit of De Nicola and Hennessy for
reactive probabilistic processes, i.e. for processes where the internal
nondeterminism is due to random behaviour. We characterize the testing
equivalence in terms of ready-traces. From the characterization it follows that
the equivalence is insensitive to the exact moment in time in which an internal
probabilistic choice occurs, which is inherent from the original testing
equivalence of De Nicola and Hennessy. We also show decidability of the testing
equivalence for finite systems for which the complete model may not be known
Divergence in Dialogue
Copyright: 2014 Healey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This work was supported by the Economic and Social Research Council (ESRC; http://www.esrc.ac.uk/) through the DynDial project (Dynamics of Conversational Dialogue, RES-062-23-0962) and the Engineering and Physical Sciences Research Council (EPSRC; http://www.epsrc.ac.uk/) through the RISER
project (Robust Incremental Semantic Resources for Dialogue, EP/J010383/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Cognitive compensatory processes of older, clinically fit patients with hematologic malignancies undergoing chemotherapy: A longitudinal cohort study
peer reviewedObjective: Despite the well-known negative impacts of cancer and anticancer therapies on cognitive performance, little is known about the cognitive compensatory processes of older patients with cancer. This study was designed to investigate the cognitive compensatory processes of older, clinically fit patients with hematologic malignancies undergoing chemotherapy. Methods: We assessed 89 consecutive patients (age ≥ 65 y) without severe cognitive impairment and 89 age-, sex-, and education level-matched healthy controls. Cognitive compensatory processes were investigated by (1) comparing cognitive performance of patients and healthy controls in novel (first exposure to cognitive tasks) and non-novel (second exposure to the same cognitive tasks) contexts, and (2) assessing psychological factors that may facilitate or inhibit cognitive performance, such as motivation, psychological distress, and perceived cognitive performance. We assessed cognitive performance with the Trail-Making, Digit Span and FCSR-IR tests, psychological distress with the Hospital Anxiety and Depression Scale, and perceived cognitive performance with the FACT-Cog questionnaire. Results: In novel and non-novel contexts, average cognitive performances of healthy controls were higher than those of patients and were associated with motivation. Cognitive performance of patients was not associated with investigated psychological factors in the novel context but was associated with motivation and psychological distress in the non-novel context. Conclusions: Older, clinically fit patients with hematologic malignancies undergoing chemotherapy demonstrated lower cognitive compensatory processes compared to healthy controls. Reducing distress and increasing motivation may improve cognitive compensatory processes of patients in non-novel contexts. Copyright © 2017 John Wiley & Sons, Ltd
How can the D-Wave machine exhibit long-time quantum behaviour
Extensive experiments have demonstrated quantum behaviour in the long-time operation of the D-Wave quantum computer. The decoherence time of a single flux qubit is reported to be on the order of nanoseconds [1],which is much shorter than the time required to carry out a computation on the timescale of seconds [2, 3]. Previous judgements of whether the D-Wave device should be thought of as a quantum computer have been based on correlations of the input-output behaviour of the D-Wave machine with a quantum model, called simulated quantum annealing, or classical models, called simulated annealing and classical spin dynamics [4]. Explanations for a factor of 10(8) discrepancy between the single flux qubit decoherence time and the long-time coherent quantum behaviour of many integrated flux qubits of the D-Wave device have not been offered so far. In our contribution we investigate a model of four qubits with one qubit coupled to a phonon and (optionally) to environmental particles of high density of states, called gravonons. The calculations indicate that when no gravonons are present, the current in the qubit is flipped at some time and adiabatic evolution is discontinued. The time dependent wave functional becomes a non-correctable superposition of many excited states. The results demonstrate the possibility of effectively suppressing the current flip and allowing for continued adiabatic evolution when the entanglement to gravonons is included. This adiabatic evolution is, however, a coherent evolution in high dimensional spacetime and cannot be understood as a solution of Schrodinger's time dependent equation in 4 dimensional spacetime. Compared to Schrodinger's time development in 4D, the evolution is considerably slowed down, though still adiabatic. The properties of our model reflect correctly the experimentally found behaviour of the D-Wave machine and explain the factor of 10(8) discrepancy between decoherence time and quantum computation time. The observation and our explanation are in anology to the 10(8) discrepancy factor found, when comparing experimental results on adsorbate quantum diffusion rate with predictions of Schrodinger's time dependent equation, which can also be resolved in a model with the coupling to gravonons included
Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission
International audienceIncandescent filaments and membranes are often used as infrared sources despite their low efficiency, broad angular emission, and lack of spectral selectivity. Here, we introduce a metasurface to control simultaneously the spectrum and the directivity of blackbody radiation. The plasmonic metasurface operates reliably at 600 °C with an emissivity higher than 0.85 in a narrow frequency band and in a narrow solid angle. This emitter paves the way for the development of compact, efficient, and cheap IR sources and gas detection systems
Distribution-based bisimulation for labelled Markov processes
In this paper we propose a (sub)distribution-based bisimulation for labelled
Markov processes and compare it with earlier definitions of state and event
bisimulation, which both only compare states. In contrast to those state-based
bisimulations, our distribution bisimulation is weaker, but corresponds more
closely to linear properties. We construct a logic and a metric to describe our
distribution bisimulation and discuss linearity, continuity and compositional
properties.Comment: Accepted by FORMATS 201
Probabilistic Bisimulation: Naturally on Distributions
In contrast to the usual understanding of probabilistic systems as stochastic
processes, recently these systems have also been regarded as transformers of
probabilities. In this paper, we give a natural definition of strong
bisimulation for probabilistic systems corresponding to this view that treats
probability distributions as first-class citizens. Our definition applies in
the same way to discrete systems as well as to systems with uncountable state
and action spaces. Several examples demonstrate that our definition refines the
understanding of behavioural equivalences of probabilistic systems. In
particular, it solves a long-standing open problem concerning the
representation of memoryless continuous time by memory-full continuous time.
Finally, we give algorithms for computing this bisimulation not only for finite
but also for classes of uncountably infinite systems
- …
