11,169 research outputs found
Exact Wavefunctions for a Delta Function Bose Gas with Higher Derivatives
A quantum mechanical system describing bosons in one space dimension with a
kinetic energy of arbitrary order in derivatives and a delta function
interaction is studied. Exact wavefunctions for an arbitrary number of
particles and order of derivative are constructed. Also, equations determining
the spectrum of eigenvalues are found
Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values
The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data
Two-photon absorption in potassium niobate
We report measurements of thermal self-locking of a Fabry-Perot cavity
containing a potassium niobate (KNbO3) crystal. We develop a method to
determine linear and nonlinear optical absorption coefficients in intracavity
crystals by detailed analysis of the transmission lineshapes. These lineshapes
are typical of optical bistability in thermally loaded cavities. For our
crystal, we determine the one-photon absorption coefficient at 846 nm to be
(0.0034 \pm 0.0022) per m and the two-photon absorption coefficient at 846 nm
to be (3.2 \pm 0.5) \times 10^{-11} m/W and the one-photon absorption
coefficient at 423 nm to be (13 \pm 2) per m. We also address the issue of
blue-light-induced-infrared-absorption (BLIIRA), and determine a coefficient
for this excited state absorption process. Our method is particularly well
suited to bulk absorption measurements where absorption is small compared to
scattering. We also report new measurements of the temperature dependence of
the index of refraction at 846 nm, and compare to values in the literature.Comment: 8 pages. To appear in J. Opt. Soc. Am.
Complex microwave conductivity of Na-DNA powders
We report the complex microwave conductivity, , of
Na-DNA powders, which was measured from 80 K to 300 K by using a microwave
cavity perturbation technique. We found that the magnitude of near
room temperature was much larger than the contribution of the surrounding water
molecules, and that the decrease of with decreasing temperature was
sufficiently stronger than that of the conduction of counterions. These results
clearly suggest that the electrical conduction of Na-DNA is intrinsically
semiconductive.Comment: 16 pages, 7 figure
Lunar Dust Charging by Secondary Electron Emission and its Complex Role in the Lunar Environment
The lunar surface is covered with a thick layer of micron/sub-micron size dust grains formed by billions of years of meteoritic impact. With virtually no atmosphere and exposed to the solar wind plasma and solar electromagnetic radiation, the lunar surface and the dust grains are electrostatically charged. The dominant charging processes include: photoelectric emissions (UV, X-rays), impact of solar wind electrons and ions, and secondary electron emissions (SEE) induced by energetic solar wind electrons. During the Apollo missions, the astronauts found the lunar dust to be extraordinarily high in its adhesive characteristics, sticking to the suits and the mechanical equipment. Electrostatically charged lunar dust is believed to be transported over long distances by the induced electric fields, as indicated by the observed dust streamers and the horizon glow [e.g., 1-3]. The hazardous effects of dust in the lunar environment are recognized to be one of the major issues that must be addressed in planning the forthcoming missions for robotic and human exploration of the Moon. Theoretical studies are being performed along with the development of analytical models and a variety of experimental investigations, to better understand the lunar dust phenomena. [e.g., 4-6]. The lunar dust is believed to be charged negatively on the lunar night-side by interaction With solar wind electrons. However, rigorous theoretical expressions for calculation of SEE yields and the sticking efficiencies of individual micron size dust grains are not yet available, and the information has to be obtained by experiment. On theoretical considerations, however, it is well recognized that SEE yields, similar to the photoelectric yields for small-size grains, would be totally different from the corresponding bulk values [e.g., 7-9]. Some theoretical models for charging of individual small spherical particles have been developed [e.g., 10], and some limited measurements on individual metallic dust grains at keV electron energies have been made [e.g., i 1]. In this paper, we present the first measurements of the secondary electron emission yields of individual micron/sub-micron size dust grains selected from sample returns of Apollo 11 and Apollo 17 missions
Microwave Measurement of Complex Permittivity and Conductivity of Silicon by a Simple Technique
Fiber-optic three axis magnetometer prototype development
The goal of this research program was to develop a high sensitivity, fiber optic, interferometric, three-axis magnetometer for interplanetary spacecraft applications. Dynamics Technology, Inc. (DTI) has successfully integrated a low noise, high bandwidth interferometer with high sensitivity metallic glass transducers. Also, DTI has developed sophisticated signal processing electronics and complete data acquisition, filtering, and display software. The sensor was packaged in a compact, low power and weight unit which facilitates deployment. The magnetic field sensor had subgamma sensitivity and a dynamic range of 10(exp 5) gamma in a 10 Hz bandwidth. Furthermore, the vector instrument exhibited the lowest noise level when only one axis was in operation. A system noise level of 1 gamma rms was observed in a 1 Hz bandwidth. However, with the other two channels operating, the noise level increased by about one order of magnitude. Higher system noise was attributed to cross-channel interference among the dither fields
Small scale irrigation using collector wells pilot project - Zimbabwe. Final report October 1992 - January 1996
- …
