1,091 research outputs found
Heavy- to light-meson transition form factors
Semileptonic heavy -> heavy and heavy -> light meson transitions are studied
as a phenomenological application of a heavy-quark limit of Dyson-Schwinger
equations. Employing two parameters: E, the difference between the mass of the
heavy meson and the effective-mass of the heavy quark; and Lambda, the width of
the heavy-meson Bethe-Salpeter amplitude, we calculate f_+(t) for all decays on
their entire kinematically accessible t-domain. Our study favours f_B in the
range 0.135-0.17 GeV and with E=0.44 GeV and 1/Lambda = 0.14 fm we obtain
f_+^{B pi}(0) = 0.46. As a result of neglecting 1/m_c-corrections, we estimate
that our calculated values of \rho^2 = 0.87 and f_+^{DK}(0)=0.62 are too low by
approximately 15%. However, the bulk of these corrections should cancel in our
calculated values of Br(D -> \pi l nu)/Br(D -> K l nu)=0.13 and f_+^{D
pi}(0)/f_+^{DK}(0) = 1.16.Comment: 26 pages, 3 figures, REVTE
Semileptonic B decays to excited charmed mesons
Exclusive semileptonic B decays into excited charmed mesons are investigated
at order in the heavy quark effective theory. Differential
decay rates for each helicity state of the four lightest excited mesons
(, , , and ) are examined. At zero recoil,
corrections to the matrix elements of the weak currents can
be written in terms of the leading Isgur-Wise functions for the corresponding
transition and meson mass splittings. A model independent prediction is found
for the slope parameter of the decay rate into helicity zero at zero
recoil. The differential decay rates are predicted, including
corrections with some model dependence away from zero
recoil and including order corrections. Ratios of various exclusive
branching ratios are computed. Matrix elements of the weak currents between
mesons and other excited charmed mesons are discussed at zero recoil to order
. These amplitudes vanish at leading order, and can be
written at order in terms of local matrix elements.
Applications to decay sum rules and factorization are presented.Comment: 39 pages revtex including 10 figures, uses epsf. Substantial
improvements throughout the pape
Measurement of the B-Meson Inclusive Semileptonic Branching Fraction and Electron-Energy Moments
We report a new measurement of the B-meson semileptonic decay momentum
spectrum that has been made with a sample of 9.4/fb of electron-positron
annihilation data collected with the CLEO II detector at the Y(4S) resonance.
Electrons from primary semileptonic decays and secondary charm decays were
separated by using charge and angular correlations in Y(4S) events with a
high-momentum lepton and an additional electron. We determined the semileptonic
branching fraction to be (10.91 +- 0.09 +- 0.24)% from the normalization of the
electron-energy spectrum. We also measured the moments of the electron energy
spectrum with minimum energies from 0.6 GeV to 1.5 GeV.Comment: 36 pages postscript, als available through
http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with
preceding preprint hep-ex/0403052
P and CP violation in B physics
While the Kobayashi--Maskawa single phase origin of CP violation passed its
first crucial precision test in , the chirality of weak
-quark couplings has not yet been carefully tested. We discuss recent
proposals for studying the chiral and CP-violating structure of these couplings
in radiative and in hadronic B decays.Comment: 15 pages, talk at PASCOS'03, Tata Inst., Mumbai, Jan. 200
Transition Form Factors between Pseudoscalar and Vector Mesons in Light-Front Dynamics
We study the transition form factors between pseudoscalar and vector mesons
using a covariant fermion field theory model in dimensions. Performing
the light-front calculation in the frame in parallel with the
manifestly covariant calculation, we note that the suspected nonvanishing
zero-mode contribution to the light-front current does not exist in our
analysis of transition form factors. We also perform the light-front
calculation in a purely longitudinal frame and confirm that the form
factors obtained directly from the timelike region are identical to the ones
obtained by the analytic continuation from the spacelike region. Our results
for the decay process satisfy the constraints on the
heavy-to-heavy semileptonic decays imposed by the flavor independence in the
heavy quark limit.Comment: 20 pages, 14 figure
Determination of the D0 -> K+pi- Relative Strong Phase Using Quantum-Correlated Measurements in e+e- -> D0 D0bar at CLEO
We exploit the quantum coherence between pair-produced D0 and D0bar in
psi(3770) decays to study charm mixing, which is characterized by the
parameters x and y, and to make a first determination of the relative strong
phase \delta between doubly Cabibbo-suppressed D0 -> K+pi- and Cabibbo-favored
D0bar -> K+pi-. We analyze a sample of 1.0 million D0D0bar pairs from 281 pb^-1
of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77 GeV.
By combining CLEO-c measurements with branching fraction input and
time-integrated measurements of R_M = (x^2+y^2)/2 and R_{WS} = Gamma(D0 ->
K+pi-)/Gamma(D0bar -> K+pi-) from other experiments, we find \cos\delta = 1.03
+0.31-0.17 +- 0.06, where the uncertainties are statistical and systematic,
respectively. In addition, by further including external measurements of charm
mixing parameters, we obtain an alternate measurement of \cos\delta = 1.10 +-
0.35 +- 0.07, as well as x\sin\delta = (4.4 +2.7-1.8 +- 2.9) x 10^-3 and \delta
= 22 +11-12 +9-11 degrees.Comment: 37 pages, also available through
http://www.lns.cornell.edu/public/CLNS/2007/. Incorporated referee's comment
Measurement of the Decay Constant using $D_S^+ --> ell^+ nu
We measure the decay constant fDs using the Ds -> l+ nu channel, where the l+
designates either a mu+ or a tau+, when the tau+ -> pi+ nu. Using both
measurements we find fDs = 274 +-13 +- 7 MeV. Combining with our previous
determination of fD+, we compute the ratio fDs/fD+ = 1.23 +- 0.11 +- 0.04. We
compare with theoretical estimates.Comment: 6 pages postscript,also available through
http://www.lns.cornell.edu/public/CLNS/2007
Update of the measurement of the cross section for e^+e^- -> psi(3770) -> hadrons
We have updated our measurement of the cross section for e^+e^- -> psi(3770)
-> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) ->
hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96,
092002 (2006). Simultaneous with this arXiv update, we have published an
erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have
corrected a mistake in the computation of the error on the difference of the
cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) ->
DDbar. We have also used a more recent CLEO measurement of cross section for
e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the
branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.Comment: 3 pages, 0 figures. This is an erratum to
Phys.Rev.Lett.96:092002,2006. Added a reference
Measurement of \cal{B}(D^+ --> mu^+ nu) and the Pseudoscalar Decay Constant
In 60 pb-1 of data taken on the psi(3770) resonance with the CLEO-c detector,
we find 8 D+ to mu+ nu event candidates that are mostly signal, containing only
1 estimated background. Using this statistically compelling sample, we measure
preliminary values of B(D+ to mu+ nu) = (3.5 +- 1.4 +- 0.6)*10^{-4}, and
determine f_{D+} =(201+- 41+- 17) MeV.Comment: 17 pages postscript, also available through
http://www.lns.cornell.edu/public/CONF/2004/, Presented at ICHEP Aug
16-22,2004, Beijing, Chin
- …
