1,176 research outputs found

    CLAS+FROST: new generation of photoproduction experiments at Jefferson Lab

    Full text link
    A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to baryon spectroscopy. Photoproduction experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams provide unique conditions for this type of experiments. Recent addition of the Frozen Spin Target (FROST) gives a remarkable opportunity to measure double and triple polarization observables for different pseudo-scalar meson photoproduction processes. For the first time, a complete or nearly complete experiment becomes possible and will allow model independent extraction of the reaction amplitude. An overview of the experiment and its current status is presented.Comment: 6 pages, 7 figures. Invited paper NSTAR 2009 conferenc

    The homotopy theory of dg-categories and derived Morita theory

    Full text link
    The main purpose of this work is the study of the homotopy theory of dg-categories up to quasi-equivalences. Our main result provides a natural description of the mapping spaces between two dg-categories CC and DD in terms of the nerve of a certain category of (C,D)(C,D)-bimodules. We also prove that the homotopy category Ho(dgCat)Ho(dg-Cat) is cartesian closed (i.e. possesses internal Hom's relative to the tensor product). We use these two results in order to prove a derived version of Morita theory, describing the morphisms between dg-categories of modules over two dg-categories CC and DD as the dg-category of (C,D)(C,D)-bi-modules. Finally, we give three applications of our results. The first one expresses Hochschild cohomology as endomorphisms of the identity functor, as well as higher homotopy groups of the \emph{classifying space of dg-categories} (i.e. the nerve of the category of dg-categories and quasi-equivalences between them). The second application is the existence of a good theory of localization for dg-categories, defined in terms of a natural universal property. Our last application states that the dg-category of (continuous) morphisms between the dg-categories of quasi-coherent (resp. perfect) complexes on two schemes (resp. smooth and proper schemes) is quasi-equivalent to the dg-category of quasi-coherent complexes (resp. perfect) on their product.Comment: 50 pages. Few mistakes corrected, and some references added. Thm. 8.15 is new. Minor corrections. Final version, to appear in Inventione

    A colimit decomposition for homotopy algebras in Cat

    Get PDF
    Badzioch showed that in the category of simplicial sets each homotopy algebra of a Lawvere theory is weakly equivalent to a strict algebra. In seeking to extend this result to other contexts Rosicky observed a key point to be that each homotopy colimit in simplicial sets admits a decomposition into a homotopy sifted colimit of finite coproducts, and asked the author whether a similar decomposition holds in the 2-category of categories Cat. Our purpose in the present paper is to show that this is the case.Comment: Some notation changed; small amount of exposition added in intr

    The de Rham homotopy theory and differential graded category

    Full text link
    This paper is a generalization of arXiv:0810.0808. We develop the de Rham homotopy theory of not necessarily nilpotent spaces, using closed dg-categories and equivariant dg-algebras. We see these two algebraic objects correspond in a certain way. We prove an equivalence between the homotopy category of schematic homotopy types and a homotopy category of closed dg-categories. We give a description of homotopy invariants of spaces in terms of minimal models. The minimal model in this context behaves much like the Sullivan's minimal model. We also provide some examples. We prove an equivalence between fiberwise rationalizations and closed dg-categories with subsidiary data.Comment: 47 pages. final version. The final publication is available at http://www.springerlink.co

    Towers and fibered products of model categories

    Get PDF
    Given a left Quillen presheaf of localized model structures, we study the homotopy limit model structure on the associated category of sections. We focus specifically on towers and fibered products of model categories. As applications we consider Postnikov towers of model categories, chromatic towers of spectra and Bousfield arithmetic squares of spectra. For spectral model categories, we show that the homotopy fiber of a stable left Bousfield localization is a stable right Bousfield localization

    Homological Localisation of Model Categories

    Get PDF
    One of the most useful methods for studying the stable homotopy category is localising at some spectrum E. For an arbitrary stable model category we introduce a candidate for the E–localisation of this model category. We study the properties of this new construction and relate it to some well–known categories

    Axial exchange currents and nucleon spin

    Get PDF
    We calculate the hypercharge and flavor singlet axial couplings related to the spin of the nucleon in a constituent quark model. In addition to the standard one-body axial currents, the model includes two-body axial exchange currents. The latter are necessary to satisfy the Partial Conservation of Axial Current (PCAC) condition. For both axial couplings we find significant corrections to the standard quark model prediction. Exchange currents reduce the valence quark contribution to the nucleon spin and afford an interpretation of the missing nucleon spin as orbital angular momentum carried by nonvalence quark degrees of freedom.Comment: 14 pages, 1 figur
    corecore