5,361 research outputs found

    Dimensional crossover and metal-insulator transition in quasi-two-dimensional disordered conductors

    Full text link
    We study the metal-insulator transition (MIT) in weakly coupled disordered planes on the basis of a Non-Linear Sigma Model (NLσ\sigma M). Using two different methods, a renormalization group (RG) approach and an auxiliary field method, we calculate the crossover length between a 2D regime at small length scales and a 3D regime at larger length scales. The 3D regime is described by an anisotropic 3D NLσ\sigma M with renormalized coupling constants. We obtain the critical value of the single particle interplane hopping which separates the metallic and insulating phases. We also show that a strong parallel magnetic field favors the localized phase and derive the phase diagram.Comment: 16 pages (RevTex), 4 poscript figure

    The accretion-diffusion scenario for metals in cool white dwarfs

    Full text link
    We calculated diffusion timescales for Ca, Mg, Fe in hydrogen atmosphere white dwarfs with temperatures between 5000 and 25000 K. With these timescales we determined accretion rates for a sample of 38 DAZ white dwarfs from the recent studies of Zuckerman et al. (2003) and Koester et al. (2005). Assuming that the accretion rates can be calculated with the Bondi-Hoyle formula for hydrodynamic accretion, we obtained estimates for the interstellar matter density around the accreting objects. These densities are in good agreement with new data about the warm, partially ionized phase of the ISM in the solar neighborhood.Comment: To be published in A&

    Implementation of barycentric resampling for continuous wave searches in gravitational wave data

    Get PDF
    We describe an efficient implementation of a coherent statistic for continuous gravitational wave searches from neutron stars. The algorithm works by transforming the data taken by a gravitational wave detector from a moving Earth bound frame to one that sits at the Solar System barycenter. Many practical difficulties arise in the implementation of this algorithm, some of which have not been discussed previously. These difficulties include constraints of small computer memory, discreteness of the data, losses due to interpolation and gaps in real data. This implementation is considerably more efficient than previous implementations of these kinds of searches on Laser Interferometer Gravitational Wave (LIGO) detector data.Comment: 10 pages, 3 figure

    A Renormalization group approach for highly anisotropic 2D Fermion systems: application to coupled Hubbard chains

    Full text link
    I apply a two-step density-matrix renormalization group method to the anisotropic two-dimensional Hubbard model. As a prelude to this study, I compare the numerical results to the exact one for the tight-binding model. I find a ground-state energy which agrees with the exact value up to four digits for systems as large as 24×2524 \times 25. I then apply the method to the interacting case. I find that for strong Hubbard interaction, the ground-state is dominated by magnetic correlations. These correlations are robust even in the presence of strong frustration. Interchain pair tunneling is negligible in the singlet and triplet channels and it is not enhanced by frustration. For weak Hubbard couplings, interchain non-local singlet pair tunneling is enhanced and magnetic correlations are strongly reduced. This suggests a possible superconductive ground state.Comment: 8 pages, 11 figures, expanded version of cond-mat/060856

    Quantum non-malleability and authentication

    Get PDF
    In encryption, non-malleability is a highly desirable property: it ensures that adversaries cannot manipulate the plaintext by acting on the ciphertext. Ambainis, Bouda and Winter gave a definition of non-malleability for the encryption of quantum data. In this work, we show that this definition is too weak, as it allows adversaries to "inject" plaintexts of their choice into the ciphertext. We give a new definition of quantum non-malleability which resolves this problem. Our definition is expressed in terms of entropic quantities, considers stronger adversaries, and does not assume secrecy. Rather, we prove that quantum non-malleability implies secrecy; this is in stark contrast to the classical setting, where the two properties are completely independent. For unitary schemes, our notion of non-malleability is equivalent to encryption with a two-design (and hence also to the definition of Ambainis et al.). Our techniques also yield new results regarding the closely-related task of quantum authentication. We show that "total authentication" (a notion recently proposed by Garg, Yuen and Zhandry) can be satisfied with two-designs, a significant improvement over the eight-design construction of Garg et al. We also show that, under a mild adaptation of the rejection procedure, both total authentication and our notion of non-malleability yield quantum authentication as defined by Dupuis, Nielsen and Salvail.Comment: 20+13 pages, one figure. v2: published version plus extra material. v3: references added and update

    Genome-Wide Association to Body Mass Index and Waist Circumference: The Framingham Heart Study 100K Project

    Get PDF
    BACKGROUND: Obesity is related to multiple cardiovascular disease (CVD) risk factors as well as CVD and has a strong familial component. We tested for association between SNPs on the Affymetrix 100K SNP GeneChip and measures of adiposity in the Framingham Heart Study. METHODS: A total of 1341 Framingham Heart Study participants in 310 families genotyped with the Affymetrix 100K SNP GeneChip had adiposity traits measured over 30 years of follow up. Body mass index (BMI), waist circumference (WC), weight change, height, and radiographic measures of adiposity (subcutaneous adipose tissue, visceral adipose tissue, waist circumference, sagittal height) were measured at multiple examination cycles. Multivariable-adjusted residuals, adjusting for age, age-squared, sex, smoking, and menopausal status, were evaluated in association with the genotype data using additive Generalized Estimating Equations (GEE) and Family Based Association Test (FBAT) models. We prioritized mean BMI over offspring examinations (1–7) and cohort examinations (10, 16, 18, 20, 22, 24, 26) and mean WC over offspring examinations (4–7) for presentation. We evaluated associations with 70,987 SNPs on autosomes with minor allele frequencies of at least 0.10, Hardy-Weinberg equilibrium p ≥ 0.001, and call rates of at least 80%. RESULTS: The top SNPs to be associated with mean BMI and mean WC by GEE were rs110683 (p-value 1.22*10-7) and rs4471028 (p-values 1.96*10-7). Please see for the complete set of results. We were able to validate SNPs in known genes that have been related to BMI or other adiposity traits, including the ESR1 Xba1 SNP, PPARG, and ADIPOQ. CONCLUSION: Adiposity traits are associated with SNPs on the Affymetrix 100K SNP GeneChip. Replication of these initial findings is necessary. These data will serve as a resource for replication as more genes become identified with BMI and WC.National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195); Atwood (R01 DK066241); National Institutes of Health National Center for Research Resources Shared Instrumentation grant (1S10RR163736-01A1

    Robust Estimators in Generalized Pareto Models

    Full text link
    This paper deals with optimally-robust parameter estimation in generalized Pareto distributions (GPDs). These arise naturally in many situations where one is interested in the behavior of extreme events as motivated by the Pickands-Balkema-de Haan extreme value theorem (PBHT). The application we have in mind is calculation of the regulatory capital required by Basel II for a bank to cover operational risk. In this context the tail behavior of the underlying distribution is crucial. This is where extreme value theory enters, suggesting to estimate these high quantiles parameterically using, e.g. GPDs. Robust statistics in this context offers procedures bounding the influence of single observations, so provides reliable inference in the presence of moderate deviations from the distributional model assumptions, respectively from the mechanisms underlying the PBHT.Comment: 26pages, 6 figure

    The Ultramassive White Dwarf EUVE J1746-706

    Get PDF
    We have obtained new optical and extreme ultraviolet (EUV) spectroscopy of the ultramassive white dwarf EUVE J1746-706. We revise Vennes et al.'s (1996a, ApJ, 467, 784) original estimates of the atmospheric parameters and we measure an effective temperature of 46,500 +/- 700 K and a surface gravity log g = 9.05 +/- 0.15 (~1.2 M_o), in agreement with Balmer line profiles and the EUV continuum. We derive an upper limit on the atmospheric abundance of helium of He/H = 1.3 x 10^{-4} and a neutral hydrogen column density in the local interstellar medium N_HI = 1.8 +/- 0.4 x 10^{19} cm^{-2} from the EUV spectrum. Our upper limit corresponds to half the helium abundance observed in the atmosphere of the ultramassive white dwarf GD 50. We discuss the possibility that EUVE J1746-706 represents an earlier phase of evolution relative to GD 50 and may, therefore, help us understand the origin and evolution of massive white dwarfs.Comment: 6 pages, 4 postscript figures, uses aastex, to be published in ApJ Letter
    corecore