1,233 research outputs found
A test of the hypothesis that impact-induced fractures are preferred sites for later tectonic activity
Impact cratering has been an important process in the solar system. The cratering event is generally accompanied by faulting in adjacent terrain. Impact-induced faults are nearly ubiquitous over large areas on the terrestrial planets. The suggestion is made that these fault systems, particularly those associated with the largest impact features are preferred sites for later deformation in response to lithospheric stresses generated by other processes. The evidence is a perceived clustering of orientations of tectonic features either radial or concentric to the crater or basin in question. An opportunity exists to test this suggestion more directly on Earth. The terrestrial continents contain more than 100 known or probable impact craters, with associated geological structures mapped to varying levels of detail. Prime facie evidence for reactivation of crater-induced faults would be the occurrence of earthquakes on these faults in response to the intraplate stress field. Either an alignment of epicenters with mapped fault traces or fault plane solutions indicating slip on a plane approximately coincident with that inferred for a crater-induced fault would be sufficient to demonstrate such an association
Biological control networks suggest the use of biomimetic sets for combinatorial therapies
Cells are regulated by networks of controllers having many targets, and
targets affected by many controllers, but these "many-to-many" combinatorial
control systems are poorly understood. Here we analyze distinct cellular
networks (transcription factors, microRNAs, and protein kinases) and a
drug-target network. Certain network properties seem universal across systems
and species, suggesting the existence of common control strategies in biology.
The number of controllers is ~8% of targets and the density of links is 2.5%
\pm 1.2%. Links per node are predominantly exponentially distributed, implying
conservation of the average, which we explain using a mathematical model of
robustness in control networks. These findings suggest that optimal
pharmacological strategies may benefit from a similar, many-to-many
combinatorial structure, and molecular tools are available to test this
approach.Comment: 33 page
Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder
The failure probabilities or the strength distributions of heterogeneous 1D
systems with continuous local strength distribution and local load sharing have
been studied using a simple, exact, recursive method. The fracture behavior
depends on the local bond-strength distribution, the system size, and the
applied stress, and crossovers occur as system size or stress changes. In the
brittle region, systems with continuous disorders have a failure probability of
the modified-Gumbel form, similar to that for systems with percolation
disorder. The modified-Gumbel form is of special significance in weak-stress
situations. This new recursive method has also been generalized to calculate
exactly the failure probabilities under various boundary conditions, thereby
illustrating the important effect of surfaces in the fracture process.Comment: 9 pages, revtex, 7 figure
Reply to the comment by Jacobs and Thorpe
Reply to a comment on "Infinite-Cluster geometry in central-force networks",
PRL 78 (1997), 1480. A discussion about the order of the rigidity percolation
transition.Comment: 1 page revTe
Self-Attracting Walk on Lattices
We have studied a model of self-attracting walk proposed by Sapozhnikov using
Monte Carlo method. The mean square displacement
and the mean number of visited sites are calculated for
one-, two- and three-dimensional lattice. In one dimension, the walk shows
diffusive behaviour with . However, in two and three dimension, we
observed a non-universal behaviour, i.e., the exponent varies
continuously with the strength of the attracting interaction.Comment: 6 pages, latex, 6 postscript figures, Submitted J.Phys.
Extremal statistics in the energetics of domain walls
We study at T=0 the minimum energy of a domain wall and its gap to the first
excited state concentrating on two-dimensional random-bond Ising magnets. The
average gap scales as , where , is the energy fluctuation exponent, length scale, and
the number of energy valleys. The logarithmic scaling is due to extremal
statistics, which is illustrated by mapping the problem into the
Kardar-Parisi-Zhang roughening process. It follows that the susceptibility of
domain walls has also a logarithmic dependence on system size.Comment: Accepted for publication in Phys. Rev.
Quasi-static cracks and minimal energy surfaces
We compare the roughness of minimal energy(ME) surfaces and scalar
``quasi-static'' fracture surfaces(SQF). Two dimensional ME and SQF surfaces
have the same roughness scaling, w sim L^zeta (L is system size) with zeta =
2/3. The 3-d ME and SQF results at strong disorder are consistent with the
random-bond Ising exponent zeta (d >= 3) approx 0.21(5-d) (d is bulk
dimension). However 3-d SQF surfaces are rougher than ME ones due to a larger
prefactor. ME surfaces undergo a ``weakly rough'' to ``algebraically rough''
transition in 3-d, suggesting a similar behavior in fracture.Comment: 7 pages, aps.sty-latex, 7 figure
Infinite-cluster geometry in central-force networks
We show that the infinite percolating cluster (with density P_inf) of
central-force networks is composed of: a fractal stress-bearing backbone (Pb)
and; rigid but unstressed ``dangling ends'' which occupy a finite
volume-fraction of the lattice (Pd). Near the rigidity threshold pc, there is
then a first-order transition in P_inf = Pd + Pb, while Pb is second-order with
exponent Beta'. A new mean field theory shows Beta'(mf)=1/2, while simulations
of triangular lattices give Beta'_tr = 0.255 +/- 0.03.Comment: 6 pages, 4 figures, uses epsfig. Accepted for publication in Physical
Review Letter
Ground state non-universality in the random field Ising model
Two attractive and often used ideas, namely universality and the concept of a
zero temperature fixed point, are violated in the infinite-range random-field
Ising model. In the ground state we show that the exponents can depend
continuously on the disorder and so are non-universal. However, we also show
that at finite temperature the thermal order parameter exponent one half is
restored so that temperature is a relevant variable. The broader implications
of these results are discussed.Comment: 4 pages 2 figures, corrected prefactors caused by a missing factor of
two in Eq. 2., added a paragraph in conclusions for clarit
Random manifolds in non-linear resistor networks: Applications to varistors and superconductors
We show that current localization in polycrystalline varistors occurs on
paths which are, usually, in the universality class of the directed polymer in
a random medium. We also show that in ceramic superconductors, voltage
localizes on a surface which maps to an Ising domain wall. The emergence of
these manifolds is explained and their structure is illustrated using direct
solution of non-linear resistor networks
- …
