1,766 research outputs found
Explosions of LBV and Post-LBV Stars
In this contributed talk I presented the observational evidence for supernova (SN) explosions of stars in the luminous blue variable (LBV) and the immediate post-LBV evolutionary phases. We now have compelling indications that two recent SNe of Type II-“narrow” (IIn) were the explosions
of LBVs, including the direct identification of the progenitor LBV for one of these
examples. A recent SN of Type Ic exploded as a helium star, two years after
the powerful LBV outburst of its progenitor. These cases were also discussed
by other presenters at this Workshop in some detail. I instead focus more on
another example, SN2001em, which was first identified as a Type Ib/c, but later
evolved to Type IIn. I argue that the progenitor of this SN exploded as a Wolf-
Rayet (WR) star, following an eruptive LBV phase. Furthermore, I suggest that
two “SN impostors,” i.e., extragalactic massive stars observed to undergo pre-SN
LBV eruptions (similar to η Carinae), may well have evolved to the WR phase
in real time
Mid-Infrared Circumstellar Shell Sources Discovered with Spitzer: An Obscured Population of Massive Stars?
We have discovered a large number of circular and elliptical shells around luminous central sources at 24 μm with the MIPS instrument on board the Spitzer Space Telescope. Most of these shells are not visible in the shorter wavelengths bands of IRAC or archival 2MASS and optical images. On the other hand, many of the central stars are detected in the 2MASS catalog, but lack an optical counterpart, indicating that we are dealing with a population of highly obscured objects. Our archival follow-up effort has revealed 90% of these shell sources to be previously unknown
Late-time Dust Emission from the Type IIn Supernova 1995N
Type IIn supernovae (SNe IIn) have been found to be associated with significant amounts of dust. These core-collapse events are generally expected to be the final stage in the evolution of highly massive stars, either while in an extreme red supergiant phase or during a luminous blue variable phase. Both evolutionary scenarios involve substantial pre-supernova mass loss. I have analyzed the SN IIn 1995N in MCG –02–38–017 (Arp 261), for which mid-infrared archival data obtained with the Spitzer Space Telescope in 2009 (~14.7 yr after explosion) and with the Wide-field Infrared Survey Explorer in 2010 (~15.6-16.0 yr after explosion) reveal a luminous (~2 × 10^7 L_☉) source detected from 3.4 to 24 μm. These observations probe the circumstellar material, set up by pre-SN mass loss, around the progenitor star and indicate the presence of ~0.05-0.12 M_☉ of pre-existing, cool dust at ~240 K. This is at least a factor ~10 lower than the dust mass required to be produced from SNe at high redshift, but the case of SN 1995N lends further evidence that highly massive stars could themselves be important sources of dust
Red Eyes on Wolf-Rayet Stars: 60 New Discoveries via Infrared Color Selection
We have spectroscopically identified 60 Galactic Wolf-Rayet (WR) stars,
including 38 nitrogen types (WN) and 22 carbon types (WC). Using photometry
from the Spitzer/GLIMPSE and 2MASS databases, the WRs were selected via a
method we have established that exploits their unique infrared colors, which is
mainly the result of excess radiation from free-free scattering within their
dense ionized winds. The selection criteria has been refined since our last
report, and now yields WRs at a rate of ~20% in spectroscopic follow-up of
candidates that comprise a broad color space defined by the color distribution
of all known WRs having B>14 mag. However, there are subregions within the
broad color space which yield WRs at a rate of >50%. Cross-correlation of WR
candidates with archival X-ray point-source catalogs increases the WR detection
rate of the broad color space to ~40%; ten new WR X-ray sources have been
found, in addition to a previously unrecognized X-ray counterpart to a known
WR. The extinction values, distances, and galactocentric radii of all new WRs
are calculated using the method of spectroscopic parallax. Although the
majority of the new WRs have no obvious association with stellar clusters, two
WC8 stars reside in a previously unknown massive-star cluster that lies near
the intersection of the Scutum-Centaurus Arm and the Galaxy's bar, in which
five OB supergiants were also identified. In addition, two WC and four WN stars
were identified in association with the stellar clusters Danks 1 and 2. A WN9
star has also been associated with the cluster [DBS2003] 179. This work brings
the total number of known Galactic WRs to 476, or ~7-8% of the total
empirically estimated population. An examination of their Galactic distribution
reveals a tracing of spiral arms and an enhanced WR surface density toward
several massive-star formation sites (abridged).Comment: Accepted to the Astronomical Journal on May 20, 2011. Document is 39
pages, including 20 figures and 8 table
A Tale of Two Impostors: SN2002kg and SN1954J in NGC 2403
We describe new results on two supernova impostors in NGC 2403, SN 1954J(V12)
and SN 2002kg(V37). For the famous object SN 1954J we combine four critical
observations: its current SED, its Halpha emission line profile, the Ca II
triplet in absorption in its red spectrum, and the brightness compared to its
pre-event state. Together these strongly suggest that the survivor is now a hot
supergiant with T ~ 20000 K, a dense wind, substantial circumstellar
extinction, and a G-type supergiant companion. The hot star progenitor of V12's
giant eruption was likely in the post-red supergiant stage and had already shed
a lot of mass. V37 is a classical LBV/S Dor variable. Our photometry and
spectra observed during and after its eruption show that its outburst was an
apparent transit on the HR Diagram due to enhanced mass loss and the formation
of a cooler, dense wind. V37 is an evolved hot supergiant at ~10^6 Lsun with a
probable initial mass of 60 -80 Msun.Comment: To appear in the Astrophysical Journa
Three Concurrent Phases of Massive-Star Evolution in a Pulsar-Wind Nebula
The nebular material associated the the SNR G54.1+0.3 (hereafter G54) contains the the first reported instance of triggered star formation in the immediate vicinity of a Pulsar and its Wind Nebula (PWN). With 2MASS and Spitzer colors and followup near-IR spectroscopy, we have discovered the presence of a hot, massive and most likely evolved Be-type star among the cluster of stars hosted by the pulsar. This star has probably triggered cloud collapse and formation of at least 11 YSOs, which ring the nebula. In this unique cluster are now identified three concurrent stages of stellar evolution, from massive star birth, post-Main-Sequence transition, and stellar death
Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). I. Overview
The Small Magellanic Cloud (SMC) provides a unique laboratory for the study of the lifecycle of dust given its low metallicity (~1/5 solar) and relative proximity (~60 kpc). This motivated the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud) Spitzer Legacy program with the specific goals of studying the amount and type of dust in the present interstellar medium, the sources of dust in the winds of evolved stars, and how much dust is consumed in star formation. This program mapped the full SMC (30 deg^2) including the body, wing, and tail in seven bands from 3.6 to 160 μm using IRAC and MIPS on the Spitzer Space Telescope. The data were reduced and mosaicked, and the point sources were measured using customized routines specific for large surveys. We have made the resulting mosaics and point-source catalogs available to the community. The infrared colors of the SMC are compared to those of other nearby galaxies and the 8 μm/24 μm ratio is somewhat lower than the average and the 70 μm/160 μm ratio is somewhat higher than the average. The global infrared spectral energy distribution (SED) shows that the SMC has approximately 1/3 the aromatic emission/polycyclic aromatic hydrocarbon abundance of most nearby galaxies. Infrared color-magnitude diagrams are given illustrating the distribution of different asymptotic giant branch stars and the locations of young stellar objects. Finally, the average SED of H II/star formation regions is compared to the equivalent Large Magellanic Cloud average H II/star formation region SED. These preliminary results will be expanded in detail in subsequent papers
- …
