9,058 research outputs found

    Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 4: Open recuperated and bottomed gas turbine cycles

    Get PDF
    Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost 170to200170 to 200 /kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty

    Comparison of optical model results from a microscopic Schr\"odinger approach to nucleon-nucleus elastic scattering with those from a global Dirac phenomenology

    Full text link
    Comparisons are made between results of calculations for intermediate energy nucleon-nucleus scattering for 12C, 16O, 40Ca, 90Zr, and 208Pb, using optical potentials obtained from global Dirac phenomenology and from a microscopic Schr\"odinger model. Differential cross sections and spin observables for scattering from the set of five nuclei at 65 MeV and 200 MeV have been studied to assess the relative merits of each approach. Total reaction cross sections from proton-nucleus and total cross sections from neutron-nucleus scattering have been evaluated and compared with data for those five targets in the energy range 20 MeV to 800 MeV. The methods of analyses give results that compare well with experimental data in those energy regimes for which the procedures are suited.Comment: 22 pages, 12 figure

    Calculations of 8^{8}He+p Elastic Cross Sections Using Microscopic Optical Potential

    Full text link
    An approach to calculate microscopic optical potential (OP) with the real part obtained by a folding procedure and with the imaginary part inherent in the high-energy approximation (HEA) is applied to study the 8^8He+p elastic scattering data at energies of tens of MeV/nucleon (MeV/N). The neutron and proton density distributions obtained in different models for 8^{8}He are utilized in the calculations of the differential cross sections. The role of the spin-orbit potential is studied. Comparison of the calculations with the available experimental data on the elastic scattering differential cross sections at beam energies of 15.7, 26.25, 32, 66 and 73 MeV/N is performed. The problem of the ambiguities of the depths of each component of the optical potential is considered by means of the imposed physical criterion related to the known behavior of the volume integrals as functions of the incident energy. It is shown also that the role of the surface absorption is rather important, in particular for the lowest incident energies (e.g., 15.7 and 26.25 MeV/nucleon).Comment: 11 pages, 7 figures, accepted for publication in Physical Review

    Probing Correlated Ground States with Microscopic Optical Model for Nucleon Scattering off Doubly-Closed-Shell Nuclei

    Full text link
    The RPA long range correlations are known to play a significant role in understanding the depletion of single particle-hole states observed in (e, e') and (e, e'p) measurements. Here the Random Phase Approximation (RPA) theory, implemented using the D1S force is considered for the specific purpose of building correlated ground states and related one-body density matrix elements. These may be implemented and tested in a fully microscopic optical model for NA scattering off doubly-closed-shell nuclei. A method is presented to correct for the correlations overcounting inherent to the RPA formalism. One-body density matrix elements in the uncorrelated (i.e. Hartree-Fock) and correlated (i.e. RPA) ground states are then challenged in proton scattering studies based on the Melbourne microscopic optical model to highlight the role played by the RPA correlations. Effects of such correlations which deplete the nuclear matter at small radial distance (r << 2 fm) and enhance its surface region, are getting more and more sizeable as the incident energy increases. Illustrations are given for proton scattering observables measured up to 201 MeV for the 16^{16}O, 40^{40}Ca, 48^{48}Ca and 208^{208}Pb target nuclei. Handling the RPA correlations systematically improves the agreement between scattering predictions and data for energies higher than 150 MeV.Comment: 20 pages, 7 figure

    Towards a standard jet definition

    Get PDF
    In a simulated measurement of the WW-boson mass, evaluation of Fisher's information shows the optimal jet definition to be physically equivalent to the kTk_\mathrm{T} algorithm while being much faster at large multiplicities.Comment: version to appear in Phys. Rev. Lett., 4 page

    Predicting total reaction cross sections for nucleon-nucleus scattering

    Get PDF
    Nucleon total reaction and neutron total cross sections to 300 MeV for 12C and 208Pb, and for 65 MeV spanning the mass range, are predicted using coordinate space optical potentials formed by full folding of effective nucleon-nucleon interactions with realistic nuclear ground state densities. Good to excellent agreement is found with existing data.Comment: 10 pages, 4 figure

    A z=5.34 Galaxy Pair in the Hubble Deep Field

    Get PDF
    We present spectrograms of the faint V-drop (V(606) = 28.1, I(814) = 25.6) galaxy pair HDF3-951.1 and HDF3-951.2 obtained at the Keck II Telescope. Fernandez-Soto, Lanzetta, & Yahil (1998) derive a photometric redshift of z(ph) = 5.28 (+0.34,-0.41; 2 sigma) for these galaxies; our integrated spectrograms show a large and abrupt discontinuity near 7710 (+- 5) Angstroms. This break is almost certainly due to the Lyman alpha forest as its amplitude (1 - fnu(short) / fnu(long) > 0.87; 95% confidence limit) exceeds any discontinuities observed in stellar or galaxian rest-frame optical spectra. The resulting absorption-break redshift is z=5.34 (+- 0.01). Optical/near-IR photometry from the HDF yields an exceptionally red (V(606)-I(814)) color, consistent with this large break. A more accurate measure of the continuum depression blueward of Lyman alpha utilizing the imaging photometry yields D(A) = 0.88. The system as a whole is slightly brighter than L*(1500) relative to the z~3 Lyman break population and the total star formation rate inferred from the UV continuum is ~22 h(50)^-2 M(sun) yr^-1 (q(0) = 0.5) assuming the absence of dust extinction. The two individual galaxies are quite small (size scales < 1 h(50)^-1 kpc). Thus these galaxies superficially resemble the Pascarelle etal (1996) ``building blocks''; if they comprise a gravitationally bound system, the pair will likely merge in a time scale ~100 Myr.Comment: 18 pages, 4 figures; accepted to A

    Force-induced unfolding of a homopolymer on fractal lattice: exact results vs. mean field predictions

    Full text link
    We study the force-induced unfolding of a homopolymer on the three dimensional Sierpinski gasket. The polymer is subject to a contact energy between nearest neighbour sites not consecutive along the chain and to a stretching force. The hierarchical nature of the lattice we consider allows for an exact treatment which yields the phase diagram and the critical behaviour. We show that for this model mean field predictions are not correct, in particular in the exact phase diagram there is {\em not} a low temperature reentrance and we find that the force induced unfolding transition below the theta temperature is second order.Comment: 15 pages, 5 eps figure

    Folding model analysis of proton scattering from 18,20,22^{18,20,22}O nuclei

    Full text link
    The elastic and inelastic proton scattering on 18,20,22^{18,20,22}O nuclei are studied in a folding model formalism of nucleon-nucleus optical potential and inelastic form factor. The DDM3Y effective interaction is used and the ground state densities are obtained in continuum Skyrme-HFB approach. A semi-microscopic approach of collective form factors is done to extract the deformation parameters from inelastic scattering analysis while the microscopic approach uses the continuum QRPA form factors. Implications of the values of the deformation parameters, neutron and proton transition moments for the nuclei are discussed. The p-analyzing powers on 18,20,22^{18,20,22}O nuclei are also predicted in the same framework.Comment: 8 pages, 5 figure

    Folding, Design and Determination of Interaction Potentials Using Off-Lattice Dynamics of Model Heteropolymers

    Full text link
    We present the results of a self-consistent, unified molecular dynamics study of simple model heteropolymers in the continuum with emphasis on folding, sequence design and the determination of the interaction parameters of the effective potential between the amino acids from the knowledge of the native states of the designed sequences.Comment: 8 pages, 3 Postscript figures, uses RevTeX. Submitted to Physical Review Letter
    corecore