5,128 research outputs found
The discovery of a low mass, pre-main-sequence stellar association around gamma Velorum
We report the serendipitous discovery of a population of low mass, pre-main
sequence stars (PMS) in the direction of the Wolf-Rayet/O-star binary system
gamma^{2} Vel and the Vela OB2 association. We argue that gamma^{2} Vel and the
low mass stars are truly associated, are approximately coeval and that both are
at distances between 360-490 pc, disagreeing at the 2 sigma level with the
recent Hipparcos parallax of gamma^{2} Vel, but consistent with older distance
estimates. Our results clearly have implications for the physical parameters of
the gamma^{2} Vel system, but also offer an exciting opportunity to investigate
the influence of high mass stars on the mass function and circumstellar disc
lifetimes of their lower mass PMS siblings.Comment: Monthly Notices of the Royal Astronomical Society, Letters - in pres
Did Fomalhaut, HR 8799, and HL Tauri Form Planets via the Gravitational Instability? Placing Limits on the Required Disk Masses
Disk fragmentation resulting from the gravitational instability has been
proposed as an efficient mechanism for forming giant planets. We use the planet
Fomalhaut b, the triple-planetary system HR 8799, and the potential protoplanet
associated with HL Tau to test the viability of this mechanism. We choose the
above systems since they harbor planets with masses and orbital characteristics
favored by the fragmentation mechanism. We do not claim that these planets must
have formed as the result of fragmentation, rather the reverse: if planets can
form from disk fragmentation, then these systems are consistent with what we
should expect to see. We use the orbital characteristics of these recently
discovered planets, along with a new technique to more accurately determine the
disk cooling times, to place both lower and upper limits on the disk surface
density--and thus mass--required to form these objects by disk fragmentation.
Our cooling times are over an order of magnitude shorter than those of Rafikov
(2005),which makes disk fragmentation more feasible for these objects. We find
that the required mass interior to the planet's orbital radius is ~0.1 Msun for
Fomalhaut b, the protoplanet orbiting HL Tau, and the outermost planet of HR
8799. The two inner planets of HR 8799 probably could not have formed in situ
by disk fragmentation.Comment: 5 pages, 1 figure, accepted for publication in ApJ
M.I.T./Canadian Vestibular Experiments on the Spacelab-1 Mission. Part 1: Sensory Adaptation to Weightlessness and Readaptation to One-G: An Overview
Experiments on human spatial orientation were conducted on four crewmembers of Space Shuttle Spacelab Mission 1. The conceptual background of the project, the relationship among the experiments, and their relevance to a 'sensory reinterpretation hypothesis' are presented. Detailed experiment procedures and results are presented in the accompanying papers in this series. The overall findings are discussed as they pertain to the following aspects of hypothesized sensory reinterpretation in weightlessness: (1) utricular otolith afferent signals are reinterpreted as indicating head translation rather than tilt, (2) sensitivity of reflex responses to footward acceleration is reduced, and (3) increased weighting is given to visual and tactile cues in orientation perception and posture control. Results suggest increased weighting of visual cues and reduced weighting of graviceptor signals in weightlessness
Design and Benchmark Testing for Open Architecture Reconfigurable Mobile Spirometer and Exhaled Breath Monitor with GPS and Data Telemetry.
Portable and wearable medical instruments are poised to play an increasingly important role in health monitoring. Mobile spirometers are available commercially, and are used to monitor patients with advanced lung disease. However, these commercial monitors have a fixed product architecture determined by the manufacturer, and researchers cannot easily experiment with new configurations or add additional novel sensors over time. Spirometry combined with exhaled breath metabolite monitoring has the potential to transform healthcare and improve clinical management strategies. This research provides an updated design and benchmark testing for a flexible, portable, open access architecture to measure lung function, using common Arduino/Android microcontroller technologies. To demonstrate the feasibility and the proof-of-concept of this easily-adaptable platform technology, we had 43 subjects (healthy, and those with lung diseases) perform three spirometry maneuvers using our reconfigurable device and an office-based commercial spirometer. We found that our system compared favorably with the traditional spirometer, with high accuracy and agreement for forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), and gas measurements were feasible. This provides an adaptable/reconfigurable open access "personalized medicine" platform for researchers and patients, and new chemical sensors and other modular instrumentation can extend the flexibility of the device in the future
Observations and simulations of recurrent novae: U Sco and V394 CrA
Observations and analysis of the Aug. 1987 outburst of the recurrent nova V394 CrA are presented. This nova is extremely fast and its outburst characteristics closely resemble those of the recurrent nova U Sco. Hydrodynamic simulations of the outbursts of recurrent novae were performed. Results as applied to the outbursts of V394 CrA and U Sco are summarized
Recommended from our members
Rapid Orbital Decay in the 12.75-Minute Binary White Dwarf J0651+2844
We report the detection of orbital decay in the 12.75-minute, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13 month baseline constrain the orbital period to 765.206543(55) s and indicate that the orbit is decreasing at a rate of (-9.8 +/- 2.8) x 10(-12) s s(-1) (or -0.31 +/- 0.09 ms yr(-1)). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M-1 = 0.26 +/- 0.04 M-circle dot and M-2 = 0.50 +/- 0.04 M-circle dot. General relativity predicts orbital decay due to gravitational wave radiation of (-8.2 +/- 1.7) x 10(-12) s s(-1) (or -0.26 +/- 0.05 ms yr(-1)). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.NSF AST-0909107, AST-1008734Norman Hackerman Advanced Research Program 003658-0252-2009Astronom
The Shortest Period Detached Binary White Dwarf System
We identify SDSS J010657.39-100003.3 (hereafter J0106-1000) as the shortest
period detached binary white dwarf (WD) system currently known. We targeted
J0106-1000 as part of our radial velocity program to search for companions
around known extremely low-mass (ELM, ~ 0.2 Msol) WDs using the 6.5m MMT. We
detect peak-to-peak radial velocity variations of 740 km/s with an orbital
period of 39.1 min. The mass function and optical photometry rule out a
main-sequence star companion. Follow-up high-speed photometric observations
obtained at the McDonald 2.1m telescope reveal ellipsoidal variations from the
distorted primary but no eclipses. This is the first example of a tidally
distorted WD. Modeling the lightcurve, we constrain the inclination angle of
the system to be 67 +- 13 deg. J0106-1000 contains a pair of WDs (0.17 Msol
primary + 0.43 Msol invisible secondary) at a separation of 0.32 Rsol. The two
WDs will merge in 37 Myr and most likely form a core He-burning single subdwarf
star. J0106-1000 is the shortest timescale merger system currently known. The
gravitational wave strain from J0106-1000 is at the detection limit of the
Laser Interferometer Space Antenna (LISA). However, accurate ephemeris and
orbital period measurements may enable LISA to detect J0106-1000 above the
Galactic background noise.Comment: MNRAS Letters, in pres
The TAOS Project: Upper Bounds on the Population of Small KBOs and Tests of Models of Formation and Evolution of the Outer Solar System
We have analyzed the first 3.75 years of data from TAOS, the Taiwanese
American Occultation Survey. TAOS monitors bright stars to search for
occultations by Kuiper Belt Objects (KBOs). This dataset comprises 5e5
star-hours of multi-telescope photometric data taken at 4 or 5 Hz. No events
consistent with KBO occultations were found in this dataset. We compute the
number of events expected for the Kuiper Belt formation and evolution models of
Pan & Sari (2005), Kenyon & Bromley (2004), Benavidez & Campo Bagatin (2009),
and Fraser (2009). A comparison with the upper limits we derive from our data
constrains the parameter space of these models. This is the first detailed
comparison of models of the KBO size distribution with data from an occultation
survey. Our results suggest that the KBO population is comprised of objects
with low internal strength and that planetary migration played a role in the
shaping of the size distribution.Comment: 18 pages, 16 figures, Aj submitte
Discovery of an Unbound Hyper-Velocity Star in the Milky Way Halo
We have discovered a star, SDSS J090745.0+024507, leaving the Galaxy with a
heliocentric radial velocity of +853+-12 km/s, the largest velocity ever
observed in the Milky Way halo. The star is either a hot blue horizontal branch
star or a B9 main sequence star with a heliocentric distance ~55 kpc. Corrected
for the solar reflex motion and to the local standard of rest, the Galactic
rest-frame velocity is +709 km/s.
Because its radial velocity vector points 173.8 deg from the Galactic center,
we suggest that this star is the first example of a hyper-velocity star ejected
from the Galactic center as predicted by Hills and later discussed by Yu &
Tremaine. The star has [Fe/H]~0, consistent with a Galactic center origin, and
a travel time of <80 Myr from the Galactic center, consistent with its stellar
lifetime. If the star is indeed traveling from the Galactic center, it should
have a proper motion of 0.3 mas/yr observable with GAIA. Identifying additional
hyper-velocity stars throughout the halo will constrain the production rate
history of hyper-velocity stars at the Galactic center.Comment: 4 pages, submitted to ApJ Letter
Optical and infrared properties of V1647 Orionis during the 2003-2006 outburst. I The reflection nebula
Aims: The recent outburst of the young eruptive star V1647 Orionis has
produced a spectacular appearance of a new reflection nebula in Orion (McNeil's
nebula). We present an optical/near infrared investigation of McNeil's nebula.
This analysis is aimed at determining the morphology, temporal evolution and
nature of the nebula and its connection to the outburst.
Method: We performed multi epoch B, V, R, I, z, and K imaging of McNeil's
nebula and V1647 Ori as well as K_S imaging polarimetry. The multiband imaging
allows us to reconstruct the extinction map inside the nebula. Through
polarimetric observations we attempt to disentangle the emission from the
nebula from that of the accretion disk around V1647 Ori. We also attempt to
resolve the small spatial scale structure of the illuminating source.
Results: The energy distribution and temporal evolution of McNeil's nebula
mimic that of the illuminating source. The extinction map reveals a region of
higher extinction in the direction of V1647 Ori. Excluding foreground
extionction, the optical extinction due to McNeil's nebula in the direction of
V1647 Ori is A_V ~ 6.5 mag. The polarimetric measurement shows a compact high
polarization emission around V1647 Ori. The percentage of K_S band linear
polarization goes from 10 -- 20 %. The vectors are all well aligned with a
position angle of 90 +/- 9 degree East of North. This may correspond to the
orientation of a possible accretion disk around V1647 Ori. These findings
suggest that the appearance of McNeil's nebula is due to reflection of light by
pre-existing material in the surroundings of V1647 Ori. We also report on the
discovery of a new candidate brown dwarf or protostar in the vicinity of V1647
Ori as well as the presence of clumpy structure within HH 22A.Comment: 8 pages, 7 figures, in pres
- …
