260,549 research outputs found

    Neoclassical Models in Macroeconomics

    Get PDF

    A paradigmatic flow for small-scale magnetohydrodynamics: properties of the ideal case and the collision of current sheets

    Get PDF
    We propose two sets of initial conditions for magnetohydrodynamics (MHD) in which both the velocity and the magnetic fields have spatial symmetries that are preserved by the dynamical equations as the system evolves. When implemented numerically they allow for substantial savings in CPU time and memory storage requirements for a given resolved scale separation. Basic properties of these Taylor-Green flows generalized to MHD are given, and the ideal non-dissipative case is studied up to the equivalent of 2048^3 grid points for one of these flows. The temporal evolution of the logarithmic decrements, delta, of the energy spectrum remains exponential at the highest spatial resolution considered, for which an acceleration is observed briefly before the grid resolution is reached. Up to the end of the exponential decay of delta, the behavior is consistent with a regular flow with no appearance of a singularity. The subsequent short acceleration in the formation of small magnetic scales can be associated with a near collision of two current sheets driven together by magnetic pressure. It leads to strong gradients with a fast rotation of the direction of the magnetic field, a feature also observed in the solar wind.Comment: 8 pages, 4 figure

    Imaging 55^{55}Fe Electron Tracks in a GEM-based TPC Using a CCD Readout

    Full text link
    Images of resolved 5.9 keV electron tracks produced from 55^{55}Fe X-ray interactions are presented for the first time using an optical readout time projection chamber (TPC). The corresponding energy spectra are also shown, with the FWHM energy resolution in the 30-40\% range depending on gas pressure and gain. These tracks were produced in low pressure carbon tetrafluoride (CF4_4) gas, and imaged with a fast lens and low noise CCD camera system using the secondary scintillation produced in GEM/THGEM amplification devices. The GEM/THGEMs provided effective gas gains of 2×105\gtrsim 2 \times 10^5 in CF4_4 at low pressures in the 25-100 Torr range. The ability to resolve such low energy particle tracks has important applications in dark matter and other rare event searches, as well as in X-ray polarimetry. A practical application of the optical signal from 55^{55}Fe is that it provides a tool for mapping the detector gain spatial uniformity

    Uncertainty in epidemiology and health risk assessment

    Get PDF

    Study of controlled diffusion stator blading. 1. Aerodynamic and mechanical design report

    Get PDF
    Pratt & Whitney Aircraft is conducting a test program for NASA in order to demonstrate that a controlled-diffusion stator provides low losses at high loadings and Mach numbers. The technology has shown great promise in wind tunnel tests. Details of the design of the controlled diffusion stator vanes and the multiple-circular-arc rotor blades are presented. The stage, including stator and rotor, was designed to be suitable for the first-stage of an advanced multistage, high-pressure compressor

    R-Modes on Rapidly Rotating, Relativistic Stars: I. Do Type-I Bursts Excite Modes in the Neutron-Star Ocean?

    Full text link
    During a Type-I burst, the turbulent deflagation front may excite waves in the neutron star ocean and upper atmosphere with frequencies, ω1\omega \sim 1 Hz. These waves may be observed as highly coherent flux oscillations during the burst. The frequencies of these waves changes as the upper layers of the neutron star cool which accounts for the small variation in the observed QPO frequencies. In principle several modes could be excited but the fundamental buoyant rr-mode exhibits significantly larger variability for a given excitation than all of the other modes. An analysis of modes in the burning layers themselves and the underlying ocean shows that it is unlikely these modes can account for the observed burst oscillations. On the other hand, photospheric modes which reside in a cooler portion of the neutron star atmosphere may provide an excellent explanation for the observed oscillations.Comment: 18 pages, 1 figure, substantial changes and additions to reflect version to appear in Ap
    corecore