54,780 research outputs found

    The Melbourne Shuffle: Improving Oblivious Storage in the Cloud

    Full text link
    We present a simple, efficient, and secure data-oblivious randomized shuffle algorithm. This is the first secure data-oblivious shuffle that is not based on sorting. Our method can be used to improve previous oblivious storage solutions for network-based outsourcing of data

    Loschmidt echo and fidelity decay near an exceptional point

    Get PDF
    Non-Hermitian classical and open quantum systems near an exceptional point (EP) are known to undergo strong deviations in their dynamical behavior under small perturbations or slow cycling of parameters as compared to Hermitian systems. Such a strong sensitivity is at the heart of many interesting phenomena and applications, such as the asymmetric breakdown of the adiabatic theorem, enhanced sensing, non-Hermitian dynamical quantum phase transitions and photonic catastrophe. Like for Hermitian systems, the sensitivity to perturbations on the dynamical evolution can be captured by Loschmidt echo and fidelity after imperfect time reversal or quench dynamics. Here we disclose a rather counterintuitive phenomenon in certain non-Hermitian systems near an EP, namely the deceleration (rather than acceleration) of the fidelity decay and improved Loschmidt echo as compared to their Hermitian counterparts, despite large (non-perturbative) deformation of the energy spectrum introduced by the perturbations. This behavior is illustrated by considering the fidelity decay and Loschmidt echo for the single-particle hopping dynamics on a tight-binding lattice under an imaginary gauge field.Comment: 11 pages, 6 figures, to appear in Annalen der Physi

    On the volume functional of compact manifolds with boundary with constant scalar curvature

    Full text link
    We study the volume functional on the space of constant scalar curvature metrics with a prescribed boundary metric. We derive a sufficient and necessary condition for a metric to be a critical point, and show that the only domains in space forms, on which the standard metrics are critical points, are geodesic balls. In the zero scalar curvature case, assuming the boundary can be isometrically embedded in the Euclidean space as a compact strictly convex hypersurface, we show that the volume of a critical point is always no less than the Euclidean volume bounded by the isometric embedding of the boundary, and the two volumes are equal if and only if the critical point is isometric to a standard Euclidean ball. We also derive a second variation formula and apply it to show that, on Euclidean balls and ''small'' hyperbolic and spherical balls in dimensions 3 to 5, the standard space form metrics are indeed saddle points for the volume functional

    Temperature-Dependent Frequency Shifts in Collective Excitations of a Bose-Einstein Condensate

    Full text link
    By including the contribution of the thermal cloud to the Lagrangian of the condensate of a Bose gas, we extend the time-dependent variational method at zero temperature to study temperature-dependent low collective excitation modes. A Gaussian trial wave function of the condensate and a static distribution density of the thermal cloud are used, and analytical expressions for temperature-dependent excitation frequencies obtained. Theoretical results are compared with measurements in the JILA and MIT experiments.Comment: 13 pages, RevTex, 2 EPS figure

    Entanglement in Relativistic Quantum Field Theory

    Full text link
    I present some general ideas about quantum entanglement in relativistic quantum field theory, especially entanglement in the physical vacuum. Here, entanglement is defined between different single particle states (or modes), parameterized either by energy-momentum together with internal degrees of freedom, or by spacetime coordinate together with the component index in the case of a vector or spinor field. In this approach, the notion of entanglement between different spacetime points can be established. Some entanglement properties are obtained as constraints from symmetries, e.g., under Lorentz transformation, space inversion, time reverse and charge conjugation.Comment: 5 pages. v1: Submitted for publication in May 2004. v2: minor correction

    High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    Full text link
    In the family of the iron-based superconductors, the REREFeAsO-type compounds (with RERE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (TcT_{\mathrm{c}}) up to 55 K55\ \textrm{K} and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92_{0.92}Co0.08_{0.08}AsO (Tc=18 KT_{\mathrm{c}}=18\ \textrm{K}) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REREFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record TcT_{\mathrm{c}}. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6_{0.6}F0.4_{0.4} compound with a twice higher Tc=38 KT_{\mathrm{c}}=38\ \textrm{K}. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ\Delta below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.Comment: Open access article available online at http://www.nature.com/articles/srep1827

    Mössbauer study of nanodimensional nickel ferrite-mechanochemical synthesis and catalytic properties

    Get PDF
    Iron-nickel spinel oxide NiFe2O4 nanoparticles have been prepared by the combination of chemical precipitation and subsequent mechanical milling. For comparison, their analogue obtained by thermal synthesis is also studied. Phase composition and structural properties of iron-nickel oxides are investigated by X-ray diffraction and Mössbauer spectroscopy. Their catalytic behavior in methanol decomposition to CO and methane is tested. An influence of the preparation method on the reduction and catalytic properties of iron-nickel samples is established

    Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES

    Full text link
    Temperature dependence of the electronic structure of SmB6 is studied by high-resolution ARPES down to 1 K. We demonstrate that there is no essential difference for the dispersions of the surface states below and above the resistivity saturating anomaly (~ 3.5 K). Quantitative analyses of the surface states indicate that the quasi-particle scattering rate increases linearly as a function of temperature and binding energy, which differs from Fermi-Liquid behavior. Most intriguingly, we observe that the hybridization between the d and f states builds gradually over a wide temperature region (30 K < T < 110 K). The surface states appear when the hybridization starts to develop. Our detailed temperature-dependence results give a complete interpretation of the exotic resistivity result of SmB6, as well as the discrepancies among experimental results concerning the temperature regions in which the topological surface states emerge and the Kondo gap opens, and give new insights into the exotic Kondo crossover and its relationship with the topological surface states in the topological Kondo insulator SmB6.Comment: 8 pages, 5 figure

    Structure and superconductivity in the binary Re1x_{1-x}Mox_x alloys

    Full text link
    The binary Re1x_{1-x}Mox_x alloys, known to cover the full range of solid solutions, were successfully synthesized and their crystal structures and physical properties investigated via powder x-ray diffraction, electrical resistivity, magnetic susceptibility, and heat capacity. By varying the Re/Mo ratio we explore the full Re1x_{1-x}Mox_x binary phase diagram, in all its four different solid phases: hcp-Mg (P63/mmcP6_3/mmc), α\alpha-Mn (I43mI\overline{4}3m), β\beta-CrFe (P42/mnmP4_2/mnm), and bcc-W (Im3mIm\overline{3}m), of which the second is non-centrosymmetric with the rest being centrosymmetric. All Re1x_{1-x}Mox_x alloys are superconductors, whose critical temperatures exhibit a peculiar phase diagram, characterized by three different superconducting regions. In most alloys the TcT_c is almost an order of magnitude higher than in pure Re and Mo. Low-temperature electronic specific-heat data evidence a fully-gapped superconducting state, whose enhanced gap magnitude and specific-heat discontinuity suggest a moderately strong electron-phonon coupling across the series. Considering that several α\alpha-Mn-type ReTT alloys (TT = transition metal) show time-reversal symmetry breaking (TRSB) in the superconducting state, while TRS is preserved in the isostructural Mg10_{10}Ir19_{19}B16_{16} or Nb0.5_{0.5}Os0.5_{0.5}, the Re1x_{1-x}Mox_x alloys represent another suitable system for studying the interplay of space-inversion, gauge, and time-reversal symmetries in future experiments expected to probe TRSB in the ReTT family.Comment: 8 pages, 7 figures, accepted for publication on Physical Review Material

    Insights into the fracture mechanisms and strength of amorphous and nanocomposite carbon

    Full text link
    Tight-binding molecular dynamics simulations shed light into the fracture mechanisms and the ideal strength of tetrahedral amorphous carbon and of nanocomposite carbon containing diamond crystallites, two of the hardest materials. It is found that fracture in the nanocomposites, under tensile or shear load, occurs inter-grain and so their ideal strength is similar to the pure amorphous phase. The onset of fracture takes place at weakly bonded sp^3 sites in the amorphous matrix. On the other hand, the nanodiamond inclusions significantly enhance the elastic moduli, which approach those of diamond.Comment: 6 pages, 4 figure
    corecore