54,780 research outputs found
The Melbourne Shuffle: Improving Oblivious Storage in the Cloud
We present a simple, efficient, and secure data-oblivious randomized shuffle
algorithm. This is the first secure data-oblivious shuffle that is not based on
sorting. Our method can be used to improve previous oblivious storage solutions
for network-based outsourcing of data
Loschmidt echo and fidelity decay near an exceptional point
Non-Hermitian classical and open quantum systems near an exceptional point
(EP) are known to undergo strong deviations in their dynamical behavior under
small perturbations or slow cycling of parameters as compared to Hermitian
systems. Such a strong sensitivity is at the heart of many interesting
phenomena and applications, such as the asymmetric breakdown of the adiabatic
theorem, enhanced sensing, non-Hermitian dynamical quantum phase transitions
and photonic catastrophe. Like for Hermitian systems, the sensitivity to
perturbations on the dynamical evolution can be captured by Loschmidt echo and
fidelity after imperfect time reversal or quench dynamics. Here we disclose a
rather counterintuitive phenomenon in certain non-Hermitian systems near an EP,
namely the deceleration (rather than acceleration) of the fidelity decay and
improved Loschmidt echo as compared to their Hermitian counterparts, despite
large (non-perturbative) deformation of the energy spectrum introduced by the
perturbations. This behavior is illustrated by considering the fidelity decay
and Loschmidt echo for the single-particle hopping dynamics on a tight-binding
lattice under an imaginary gauge field.Comment: 11 pages, 6 figures, to appear in Annalen der Physi
On the volume functional of compact manifolds with boundary with constant scalar curvature
We study the volume functional on the space of constant scalar curvature
metrics with a prescribed boundary metric. We derive a sufficient and necessary
condition for a metric to be a critical point, and show that the only domains
in space forms, on which the standard metrics are critical points, are geodesic
balls. In the zero scalar curvature case, assuming the boundary can be
isometrically embedded in the Euclidean space as a compact strictly convex
hypersurface, we show that the volume of a critical point is always no less
than the Euclidean volume bounded by the isometric embedding of the boundary,
and the two volumes are equal if and only if the critical point is isometric to
a standard Euclidean ball. We also derive a second variation formula and apply
it to show that, on Euclidean balls and ''small'' hyperbolic and spherical
balls in dimensions 3 to 5, the standard space form metrics are indeed saddle
points for the volume functional
Temperature-Dependent Frequency Shifts in Collective Excitations of a Bose-Einstein Condensate
By including the contribution of the thermal cloud to the Lagrangian of the
condensate of a Bose gas, we extend the time-dependent variational method at
zero temperature to study temperature-dependent low collective excitation
modes. A Gaussian trial wave function of the condensate and a static
distribution density of the thermal cloud are used, and analytical expressions
for temperature-dependent excitation frequencies obtained. Theoretical results
are compared with measurements in the JILA and MIT experiments.Comment: 13 pages, RevTex, 2 EPS figure
Entanglement in Relativistic Quantum Field Theory
I present some general ideas about quantum entanglement in relativistic
quantum field theory, especially entanglement in the physical vacuum. Here,
entanglement is defined between different single particle states (or modes),
parameterized either by energy-momentum together with internal degrees of
freedom, or by spacetime coordinate together with the component index in the
case of a vector or spinor field. In this approach, the notion of entanglement
between different spacetime points can be established. Some entanglement
properties are obtained as constraints from symmetries, e.g., under Lorentz
transformation, space inversion, time reverse and charge conjugation.Comment: 5 pages. v1: Submitted for publication in May 2004. v2: minor
correction
High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides
In the family of the iron-based superconductors, the FeAsO-type compounds
(with being a rare-earth metal) exhibit the highest bulk superconducting
transition temperatures () up to and thus hold
the key to the elusive pairing mechanism. Recently, it has been demonstrated
that the intrinsic electronic structure of SmFeCoAsO
() is highly nontrivial and consists of multiple
band-edge singularities in close proximity to the Fermi level. However, it
remains unclear whether these singularities are generic to the FeAsO-type
materials and if so, whether their exact topology is responsible for the
aforementioned record . In this work, we use angle-resolved
photoemission spectroscopy (ARPES) to investigate the inherent electronic
structure of the NdFeAsOF compound with a twice higher
. We find a similarly singular Fermi surface and
further demonstrate that the dramatic enhancement of superconductivity in this
compound correlates closely with the fine-tuning of one of the band-edge
singularities to within a fraction of the superconducting energy gap
below the Fermi level. Our results provide compelling evidence that the
band-structure singularities near the Fermi level in the iron-based
superconductors must be explicitly accounted for in any attempt to understand
the mechanism of superconducting pairing in these materials.Comment: Open access article available online at
http://www.nature.com/articles/srep1827
Mössbauer study of nanodimensional nickel ferrite-mechanochemical synthesis and catalytic properties
Iron-nickel spinel oxide NiFe2O4 nanoparticles have been prepared by the combination of chemical precipitation and subsequent mechanical milling. For comparison, their analogue obtained by thermal synthesis is also studied. Phase composition and structural properties of iron-nickel oxides are investigated by X-ray diffraction and Mössbauer spectroscopy. Their catalytic behavior in methanol decomposition to CO and methane is tested. An influence of the preparation method on the reduction and catalytic properties of iron-nickel samples is established
Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES
Temperature dependence of the electronic structure of SmB6 is studied by
high-resolution ARPES down to 1 K. We demonstrate that there is no essential
difference for the dispersions of the surface states below and above the
resistivity saturating anomaly (~ 3.5 K). Quantitative analyses of the surface
states indicate that the quasi-particle scattering rate increases linearly as a
function of temperature and binding energy, which differs from Fermi-Liquid
behavior. Most intriguingly, we observe that the hybridization between the d
and f states builds gradually over a wide temperature region (30 K < T < 110
K). The surface states appear when the hybridization starts to develop. Our
detailed temperature-dependence results give a complete interpretation of the
exotic resistivity result of SmB6, as well as the discrepancies among
experimental results concerning the temperature regions in which the
topological surface states emerge and the Kondo gap opens, and give new
insights into the exotic Kondo crossover and its relationship with the
topological surface states in the topological Kondo insulator SmB6.Comment: 8 pages, 5 figure
Structure and superconductivity in the binary ReMo alloys
The binary ReMo alloys, known to cover the full range of solid
solutions, were successfully synthesized and their crystal structures and
physical properties investigated via powder x-ray diffraction, electrical
resistivity, magnetic susceptibility, and heat capacity. By varying the Re/Mo
ratio we explore the full ReMo binary phase diagram, in all its
four different solid phases: hcp-Mg (), -Mn
(), -CrFe (), and bcc-W (),
of which the second is non-centrosymmetric with the rest being centrosymmetric.
All ReMo alloys are superconductors, whose critical temperatures
exhibit a peculiar phase diagram, characterized by three different
superconducting regions. In most alloys the is almost an order of
magnitude higher than in pure Re and Mo. Low-temperature electronic
specific-heat data evidence a fully-gapped superconducting state, whose
enhanced gap magnitude and specific-heat discontinuity suggest a moderately
strong electron-phonon coupling across the series. Considering that several
-Mn-type Re alloys ( = transition metal) show time-reversal
symmetry breaking (TRSB) in the superconducting state, while TRS is preserved
in the isostructural MgIrB or NbOs, the
ReMo alloys represent another suitable system for studying the
interplay of space-inversion, gauge, and time-reversal symmetries in future
experiments expected to probe TRSB in the Re family.Comment: 8 pages, 7 figures, accepted for publication on Physical Review
Material
Insights into the fracture mechanisms and strength of amorphous and nanocomposite carbon
Tight-binding molecular dynamics simulations shed light into the fracture
mechanisms and the ideal strength of tetrahedral amorphous carbon and of
nanocomposite carbon containing diamond crystallites, two of the hardest
materials. It is found that fracture in the nanocomposites, under tensile or
shear load, occurs inter-grain and so their ideal strength is similar to the
pure amorphous phase. The onset of fracture takes place at weakly bonded sp^3
sites in the amorphous matrix. On the other hand, the nanodiamond inclusions
significantly enhance the elastic moduli, which approach those of diamond.Comment: 6 pages, 4 figure
- …
