258,871 research outputs found
The Case for Durative Actions: A Commentary on PDDL2.1
The addition of durative actions to PDDL2.1 sparked some controversy. Fox and
Long argued that actions should be considered as instantaneous, but can start
and stop processes. Ultimately, a limited notion of durative actions was
incorporated into the language. I argue that this notion is still impoverished,
and that the underlying philosophical position of regarding durative actions as
being a shorthand for a start action, process, and stop action ignores the
realities of modelling and execution for complex systems
Combustion instability sustained by unsteady vortex combustion
The determination of an internal feedback mechanism which leads to combustion instability inside a small scale
laboratory combustor is presented in this paper. During combustion instability, the experimental findings show that a large vortical structure is formed at an acoustic resonant mode of the system. The subsequent unsteady burning, within the vortex as it is convected downstream,
feeds energy into the acoustic field and sustains the large resonant oscillations. These vortices are formed when the
acoustic velocity fluctuation at the flameholder is a large fraction of the mean flow velocity. The propagation of
these vortices is not a strong function of the mean flow speed and appears to be dependent upon the frequency of the
instability. Continued existence of large vortical structures which characterize unstable operation depends upon the fuel-air ratio, system acoustics, and fuel type
Recent advances in computational techniques
The determination of very precise orbits and geodynamic parameters from laser tracking data requires the continual development and improvement of the software systems and computational techniques. Computational accuracies at the few centimeter level are presently required to match the performance of the present day laser ranging systems and altimeters and in the next few years the accuracies are expected to increase further. The major error sources in orbit determination are briefly discussed and the present and future modeling activities needed to meet the accuracy requirements of the next few years are described
Prospects for TLRS baseline accuracies in the western USA
One of the main goals of the LAGEOS satellite mission is the detection of regional geotectonic movements. A parametric study with the intention to obtain the optimal baseline precision from dynamic solutions of laser ranging to LAGEOS is presented. The varied parameters are: length of reduced arc, number of tracking stations, data noise and rate, biases, refraction errors, system efficiency, gravity model errors in the value of GM. The baseline precisions are 1-10 cm depending upon the set of parameters adopted. General principles obtained are also presented
Planning Graph Heuristics for Belief Space Search
Some recent works in conditional planning have proposed reachability
heuristics to improve planner scalability, but many lack a formal description
of the properties of their distance estimates. To place previous work in
context and extend work on heuristics for conditional planning, we provide a
formal basis for distance estimates between belief states. We give a definition
for the distance between belief states that relies on aggregating underlying
state distance measures. We give several techniques to aggregate state
distances and their associated properties. Many existing heuristics exhibit a
subset of the properties, but in order to provide a standardized comparison we
present several generalizations of planning graph heuristics that are used in a
single planner. We compliment our belief state distance estimate framework by
also investigating efficient planning graph data structures that incorporate
BDDs to compute the most effective heuristics.
We developed two planners to serve as test-beds for our investigation. The
first, CAltAlt, is a conformant regression planner that uses A* search. The
second, POND, is a conditional progression planner that uses AO* search. We
show the relative effectiveness of our heuristic techniques within these
planners. We also compare the performance of these planners with several state
of the art approaches in conditional planning
Rubber-coated bellows improves vibration damping in vacuum lines
Compact-vibration damping systems, consisting of rubber-coated metal bellows with a sliding O-ring connector, are used in vacuum lines. The device presents a metallic surface to the vacuum system and combines flexibility with the necessary stiffness. It protects against physical damage, reduces fatigue failure, and provides easy mating of nonparallel lines
Precision tracking systems of the immediate future: A discussion
The present status and future expectations of four satellite tracking systems, satellite-to-satellite tracking, lasers, very long baseline interferometry (VLBI) and geoceiver are briefly discussed
Applications of inverse simulation to a nonlinear model of an underwater vehicle
Inverse simulation provides an important alternative
to conventional simulation and to more formal
mathematical techniques of model inversion. The
application of inverse simulation methods to a nonlinear
dynamic model of an unmanned underwater vehicle with
actuator limits is found to give rise to a number of
challenging problems. It is shown that this particular
problem requires, in common with other applications that
include hard nonlinearities in the model or discontinuities
in the required trajectory, can best be approached using a
search-based optimization algorithm for inverse
simulation in place of the more conventional Newton-
Raphson approach. Results show that meaningful inverse
simulation results can be obtained but that multi-solution
responses exist. Although the inverse solutions are not
unique they are shown to generate the required
trajectories when tested using conventional forward
simulation methods
CFD Mixing Analysis of Jets Injected from Straight and Slanted Slots into Confined Crossflow in Rectangular Ducts
A CFD study was performed to analyze the mixing potential of opposed rows of staggered jets injected into confined crossflow in a rectangular duct. Three jet configurations were numerically tested: (1) straight (0 deg) slots; (2) perpendicular slanted (45 deg) slots angled in opposite directions on top and bottom walls; and (3) parallel slanted (45 deg) slots angled in the same direction on top and bottom walls. All three configurations were tested at slot spacing-to-duct height ratios (S/H) of 0.5, 0.75, and 1.0; a jet-to-mainstream momentum flux ratio (J) of 100; and a jet-to-mainstream mass flow ratio of 0.383. Each configuration had its best mixing performance at S/H of 0.75. Asymmetric flow patterns were expected and predicted for all slanted slot configurations. The parallel slanted slot configuration was the best overall configuration at x/H of 1.0 for S/H of 0.75
- …
