2,026 research outputs found
Atomistic Hydrodynamics and the Dynamical Hydrophobic Effect in Porous Graphene
Mirroring their role in electrical and optical physics, two-dimensional
crystals are emerging as novel platforms for fluid separations and water
desalination, which are hydrodynamic processes that occur in nanoscale
environments. For numerical simulation to play a predictive and descriptive
role, one must have theoretically sound methods that span orders of magnitude
in physical scales, from the atomistic motions of particles inside the channels
to the large-scale hydrodynamic gradients that drive transport. Here, we use
constraint dynamics to derive a nonequilibrium molecular dynamics method for
simulating steady-state mass flow of a fluid moving through the nanoscopic
spaces of a porous solid. After validating our method on a model system, we use
it to study the hydrophobic effect of water moving through pores of
electrically doped single-layer graphene. The trend in permeability that we
calculate does not follow the hydrophobicity of the membrane, but is instead
governed by a crossover between two competing molecular transport mechanisms.Comment: 6 pages, 3 figure
Exciton Dynamics in Carbon Nanotubes: From the Luttinger Liquid to Harmonic Oscillators
We show that the absorption spectrum in semiconducting nanotubes can be
determined using the bosonization technique combined with mean-field theory and
a harmonic approximation. Our results indicate that a multiple band
semiconducting nanotube reduces to a system of weakly coupled harmonic
oscillators. Additionally, the quasiparticle nature of the electron and hole
that comprise an optical exciton emerges naturally from the bosonized model.Comment: 5 pages, 3 figure
Space shuttle: Heat transfer investigation of the McDonnell-Douglas delta wing orbiter at a nominal Mach number of 10.5
Heat transfer tests for the delta wing orbiter were conducted in a hypervelocity wind tunnel. A 1.1 percent scale model was tested at a Mach number of approximately 10.5 over an angle of attack range from 10 to 60 degrees over a length Reynolds number range from 5 times 10 to the 6th power to 24 times 10 to the 6th power. Heat transfer results were obtained from model surface heat gage measurements and thermographic phosphor paint. Limited pressure measurements were obtained
Optical imaging of resonant electrical carrier injection into individual quantum dots
We image the micro-electroluminescence (EL) spectra of self-assembled InAs
quantum dots (QDs) embedded in the intrinsic region of a GaAs p-i-n diode and
demonstrate optical detection of resonant carrier injection into a single QD.
Resonant tunneling of electrons and holes into the QDs at bias voltages below
the flat-band condition leads to sharp EL lines characteristic of individual
QDs, accompanied by a spatial fragmentation of the surface EL emission into
small and discrete light- emitting areas, each with its own spectral
fingerprint and Stark shift. We explain this behavior in terms of Coulomb
interaction effects and the selective excitation of a small number of QDs
within the ensemble due to preferential resonant tunneling paths for carriers.Comment: 4 page
Anisotropy in nanocellular polymers promoted by the addition of needle‐like sepiolites
This work presents a new strategy for obtaining nanocellular materials with high anisotropy ratios by means of the addition of needle‐like nanoparticles. Nanocellular polymers are of great interest due to their outstanding properties, whereas anisotropic structures allow the realization of improved thermal and mechanical properties in certain directions. Nanocomposites based on poly(methyl methacrylate) (PMMA) with nanometric sepiolites are generated by extrusion. From the extruded filaments, cellular materials are produced using a two‐step gas dissolution foaming method. The effect of adding various types and contents of sepiolites is investigated. As a result of the extrusion process, the needle‐like sepiolites are aligned in the machine direction in the solid nanocomposites. Regarding the cellular materials, the addition of sepiolites allows one to obtain anisotropic nanocellular polymers with cell sizes of 150 to 420 nm and cell nucleation densities of 1013–1014 nuclei cm−3 and presenting anisotropy ratios ranging from 1.38 to 2.15, the extrusion direction being the direction of the anisotropy. To explain the appearance of anisotropy, a mechanism based on cell coalescence is proposed and discussed. In addition, it is shown that it is possible to control the anisotropy ratio of the PMMA/sepiolite nanocellular polymers by changing the amount of well‐dispersed sepiolites in the solid nanocomposites
On the Nature of Trapped-Hole States in CdS Nanocrystals and the Mechanism of their Diffusion
Recent transient absorption experiments on CdS nanorods suggest that
photoexcited holes rapidly trap to the surface of these particles and then
undergo diffusion along the rod surface. In this paper, we present a
semiperiodic DFT model for the CdS nanocrystal surface, analyze it, and comment
on the nature of both the hole-trap states and the mechanism by which the holes
diffuse. Hole states near the top of the valence band form an energetic near
continuum with the bulk, and localize to the non-bonding sp orbitals on
surface sulfur atoms. After localization, the holes form nonadiabatic small
polarons that move between the sulfur orbitals on the surface of the particle
in a series of uncorrelated, incoherent, thermally-activated hops at room
temperature. The surface-trapped holes are deeply in the weak-electronic
coupling limit and, as a result, undergo slow diffusion.Comment: 4 figure
Validation of magnetophonon spectroscopy as a tool for analyzing hot-electron effects in devices
It is shown that very high precision hot-electron magnetophonon experiments made on n+n−n+-GaAs sandwich device structures which are customized for magnetoresistance measurements can be very accurately modeled by a new Monte Carlo technique. The latter takes account of the Landau quantization and device architecture as well as material parameters. It is proposed that this combination of experiment and modeling yields a quantitative tool for the direct analysis of spatially localized very nonequilibrium electron distributions in small devices and low dimensional structures
Effects of diamagnetic levitation on bacterial growth in liquid
Diamagnetic levitation is a technique that uses a strong, spatially-varying magnetic field to levitate diamagnetic materials, such as water and biological cells. This technique has the potential to simulate aspects of weightlessness, on the Earth. In common with all ground-based techniques to simulate weightlessness, however, there are effects introduced by diamagnetic levitation that are not present in space. Since there have been few studies that systematically investigate these differences, diamagnetic levitation is not yet being fully exploited. For the first time, we critically assess the effect of diamagnetic levitation on a bacterial culture in liquid. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 hours, in a series of experiments to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture. The speed of sedimentation of the bacterial cells to the bottom of the container is considerably reduced. Further experiments and microarray gene analysis show that the growth enhancement is due to greater oxygen availability in the magnetically levitated sample. We demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid, an effect not present in microgravity. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause the liquid to become unstable to convection when the consumption of oxygen by the bacteria generates an oxygen concentration gradient. We propose that this convection enhances oxygen availability by transporting oxygen around the sample. Since convection is absent in space, these results are of significant importance and timeliness to researchers considering using diamagnetic levitation to explore weightless effects on living organisms and a broad range of other topics in the physical and life sciences
- …
