1,246 research outputs found
Multi-Person Pose Estimation with Local Joint-to-Person Associations
Despite of the recent success of neural networks for human pose estimation,
current approaches are limited to pose estimation of a single person and cannot
handle humans in groups or crowds. In this work, we propose a method that
estimates the poses of multiple persons in an image in which a person can be
occluded by another person or might be truncated. To this end, we consider
multi-person pose estimation as a joint-to-person association problem. We
construct a fully connected graph from a set of detected joint candidates in an
image and resolve the joint-to-person association and outlier detection using
integer linear programming. Since solving joint-to-person association jointly
for all persons in an image is an NP-hard problem and even approximations are
expensive, we solve the problem locally for each person. On the challenging
MPII Human Pose Dataset for multiple persons, our approach achieves the
accuracy of a state-of-the-art method, but it is 6,000 to 19,000 times faster.Comment: Accepted to European Conference on Computer Vision (ECCV) Workshops,
Crowd Understanding, 201
Volcanic forcing improves Atmosphere-Ocean Coupled General Circulation Model scaling performance
Recent Atmosphere-Ocean Coupled General Circulation Model (AOGCM) simulations
of the twentieth century climate, which account for anthropogenic and natural
forcings, make it possible to study the origin of long-term temperature
correlations found in the observed records. We study ensemble experiments
performed with the NCAR PCM for 10 different historical scenarios, including no
forcings, greenhouse gas, sulfate aerosol, ozone, solar, volcanic forcing and
various combinations, such as it natural, anthropogenic and all forcings. We
compare the scaling exponents characterizing the long-term correlations of the
observed and simulated model data for 16 representative land stations and 16
sites in the Atlantic Ocean for these scenarios. We find that inclusion of
volcanic forcing in the AOGCM considerably improves the PCM scaling behavior.
The scenarios containing volcanic forcing are able to reproduce quite well the
observed scaling exponents for the land with exponents around 0.65 independent
of the station distance from the ocean. For the Atlantic Ocean, scenarios with
the volcanic forcing slightly underestimate the observed persistence exhibiting
an average exponent 0.74 instead of 0.85 for reconstructed data.Comment: 4 figure
Design considerations for table-top, laser-based VUV and X-ray free electron lasers
A recent breakthrough in laser-plasma accelerators, based upon ultrashort
high-intensity lasers, demonstrated the generation of quasi-monoenergetic
GeV-electrons. With future Petawatt lasers ultra-high beam currents of ~100 kA
in ~10 fs can be expected, allowing for drastic reduction in the undulator
length of free-electron-lasers (FELs). We present a discussion of the key
aspects of a table-top FEL design, including energy loss and chirps induced by
space-charge and wakefields. These effects become important for an optimized
table-top FEL operation. A first proof-of-principle VUV case is considered as
well as a table-top X-ray-FEL which may open a brilliant light source also for
new ways in clinical diagnostics.Comment: 6 pages, 4 figures; accepted for publication in Appl. Phys.
CLASH: z ~ 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7-4431
We present a quintuply lensed z ~ 6 candidate discovered in the field of the
galaxy cluster RXC J2248.7-4431 (z ~ 0.348) targeted within the Cluster Lensing
and Supernova survey with Hubble (CLASH) and selected in the deep HST Frontier
Fields survey. Thanks to the CLASH 16-band HST imaging, we identify the
quintuply lensed z ~ 6 candidate as an optical dropout in the inner region of
the cluster, the brightest image having magAB=24.81+-0.02 in the f105w filter.
We perform a detailed photometric analysis to verify its high-z and lensed
nature. We get as photometric redshift z_phot ~ 5.9, and given the extended
nature and NIR colours of the lensed images, we rule out low-z early type and
galactic star contaminants. We perform a strong lensing analysis of the
cluster, using 13 families of multiple lensed images identified in the HST
images. Our final best model predicts the high-z quintuply lensed system with a
position accuracy of 0.8''. The magnifications of the five images are between
2.2 and 8.3, which leads to a delensed UV luminosity of L_1600 ~ 0.5L*_1600 at
z=6. We also estimate the UV slope from the observed NIR colours, finding a
steep beta=-2.89+-0.38. We use singular and composite stellar population SEDs
to fit the photometry of the hiz candidate, and we conclude that it is a young
(age <300 Myr) galaxy with mass of M ~ 10^8Msol, subsolar metallicity
(Z<0.2Zsol) and low dust content (AV ~ 0.2-0.4).Comment: 21 pages, 13 figures, 6 tables, submitted to MNRAS on 11 Aug 2013,
accepted on 23 Nov 201
Detrended fluctuation analysis as a statistical tool to monitor the climate
Detrended fluctuation analysis is used to investigate power law relationship
between the monthly averages of the maximum daily temperatures for different
locations in the western US. On the map created by the power law exponents, we
can distinguish different geographical regions with different power law
exponents. When the power law exponents obtained from the detrended fluctuation
analysis are plotted versus the standard deviation of the temperature
fluctuations, we observe different data points belonging to the different
climates, hence indicating that by observing the long-time trends in the
fluctuations of temperature we can distinguish between different climates.Comment: 8 pages, 4 figures, submitted to JSTA
Modelling and Bayesian analysis of the Abakaliki smallpox data
The celebrated Abakaliki smallpox data have appeared numerous times in the epidemic modelling literature, but in almost all cases only a specific subset of the data is considered. The only previous analysis of the full data set relied on approximation methods to derive a likelihood and did not assess model adequacy. The data themselves continue to be of interest due to concerns about the possible re-emergence of smallpox as a bioterrorism weapon. We present the first full Bayesian statistical analysis using data-augmentation Markov chain Monte Carlo methods which avoid the need for likelihood approximations and which yield a wider range of results than previous analyses. We also carry out model assessment using simulation-based methods. Our findings suggest that the outbreak was largely driven by the interaction structure of the population, and that the introduction of control measures was not the sole reason for the end of the epidemic. We also obtain quantitative estimates of key quantities including reproduction numbers
Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO
Gamma-ray bursts are believed to originate in core-collapse of massive stars.
This produces an active nucleus containing a rapidly rotating Kerr black hole
surrounded by a uniformly magnetized torus represented by two counter-oriented
current rings. We quantify black hole spin-interactions with the torus and
charged particles along open magnetic flux-tubes subtended by the event
horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of
frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with
GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii)
aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich
et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al.
2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating
LIGO/Virgo detectors enables searches for nearby events and their spectral
closure density 6e-9 around 250Hz in the stochastic background radiation in
gravitational waves. At current sensitivity, LIGO-Hanford may place an upper
bound around 150MSolar in GRB030329. Detection of Egw thus provides a method
for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49
CLASH: New Multiple-Images Constraining the Inner Mass Profile of MACS J1206.2-0847
We present a strong-lensing analysis of the galaxy cluster MACS J1206.2-0847
(=0.44) using UV, Optical, and IR, HST/ACS/WFC3 data taken as part of the
CLASH multi-cycle treasury program, with VLT/VIMOS spectroscopy for some of the
multiply-lensed arcs. The CLASH observations, combined with our mass-model,
allow us to identify 47 new multiply-lensed images of 12 distant sources. These
images, along with the previously known arc, span the redshift range 1\la
z\la5.5, and thus enable us to derive a detailed mass distribution and to
accurately constrain, for the first time, the inner mass-profile of this
cluster. We find an inner profile slope of (in the range [1\arcsec, 53\arcsec], or 5\la r \la300 kpc), as
commonly found for relaxed and well-concentrated clusters. Using the many
systems uncovered here we derive credible critical curves and Einstein radii
for different source redshifts. For a source at , the critical
curve encloses a large area with an effective Einstein radius of
\theta_{E}=28\pm3\arcsec, and a projected mass of . From the current understanding of structure formation in
concordance cosmology, these values are relatively high for clusters at
, so that detailed studies of the inner mass distribution of clusters
such as MACS J1206.2-0847 can provide stringent tests of the CDM
paradigm.Comment: 7 pages, 1 table, 4 figures; submitted to ApJ Letters; V3: minor
correction
Methylation patterns in serum DNA for early identification of disseminated breast cancer
BACKGROUND: Monitoring treatment and early detection of fatal breast cancer (BC) remains a major unmet need.
Aberrant circulating DNA methylation (DNAme) patterns are likely to provide a highly specific cancer signal. We
hypothesized that cell-free DNAme markers could indicate disseminated breast cancer, even in the presence of
substantial quantities of background DNA.
METHODS: We used reduced representation bisulfite sequencing (RRBS) of 31 tissues and established serum assays
based on ultra-high coverage bisulfite sequencing in two independent prospective serum sets (n = 110). The clinical
use of one specific region, EFC#93, was validated in 419 patients (in both pre- and post-adjuvant chemotherapy
samples) from SUCCESS (Simultaneous Study of Gemcitabine-Docetaxel Combination adjuvant treatment, as well as
Extended Bisphosphonate and Surveillance-Trial) and 925 women (pre-diagnosis) from the UKCTOCS (UK Collaborative
Trial of Ovarian Cancer Screening) population cohort, with overall survival and occurrence of incident breast cancer
(which will or will not lead to death), respectively, as primary endpoints.
RESULTS: A total of 18 BC specific DNAme patterns were discovered in tissue, of which the top six were further tested in
serum. The best candidate, EFC#93, was validated for clinical use. EFC#93 was an independent poor prognostic marker in
pre-chemotherapy samples (hazard ratio [HR] for death = 7.689) and superior to circulating tumor cells (CTCs)
(HR for death = 5.681). More than 70% of patients with both CTCs and EFC#93 serum DNAme positivity in
their pre-chemotherapy samples relapsed within five years. EFC#93-positive disseminated disease in post-chemotherapy
samples seems to respond to anti-hormonal treatment. The presence of EFC#93 serum DNAme identified 42.9% and 25%
of women who were diagnosed with a fatal BC within 3–6 and 6–12 months of sample donation, respectively, with a
specificity of 88%. The sensitivity with respect to detecting fatal BC was ~ 4-fold higher compared to non-fatal BC.
CONCLUSIONS: Detection of EFC#93 serum DNAme patterns offers a new tool for early diagnosis and management of
disseminated breast cancers. Clinical trials are required to assess whether EFC#93-positive women in the absence of
radiological detectable breast cancers will benefit from anti-hormonal treatment before the breast lesions become
clinically apparent
- …
