812 research outputs found

    The moduli space of hypersurfaces whose singular locus has high dimension

    Full text link
    Let kk be an algebraically closed field and let bb and nn be integers with n3n\geq 3 and 1bn1.1\leq b \leq n-1. Consider the moduli space XX of hypersurfaces in Pkn\mathbb{P}^n_k of fixed degree ll whose singular locus is at least bb-dimensional. We prove that for large ll, XX has a unique irreducible component of maximal dimension, consisting of the hypersurfaces singular along a linear bb-dimensional subspace of Pn\mathbb{P}^n. The proof will involve a probabilistic counting argument over finite fields.Comment: Final version, including the incorporation of all comments by the refere

    Regularity of squarefree monomial ideals

    Full text link
    We survey a number of recent studies of the Castelnuovo-Mumford regularity of squarefree monomial ideals. Our focus is on bounds and exact values for the regularity in terms of combinatorial data from associated simplicial complexes and/or hypergraphs.Comment: 23 pages; survey paper; minor changes in V.

    Combinatorics of 1-particle irreducible n-point functions via coalgebra in quantum field theory

    Full text link
    We give a coalgebra structure on 1-vertex irreducible graphs which is that of a cocommutative coassociative graded connected coalgebra. We generalize the coproduct to the algebraic representation of graphs so as to express a bare 1-particle irreducible n-point function in terms of its loop order contributions. The algebraic representation is so that graphs can be evaluated as Feynman graphs

    The locus of points of the Hilbert scheme with bounded regularity

    Full text link
    In this paper we consider the Hilbert scheme Hilbp(t)nHilb_{p(t)}^n parameterizing subschemes of PnP^n with Hilbert polynomial p(t)p(t), and we investigate its locus containing points corresponding to schemes with regularity lower than or equal to a fixed integer rr'. This locus is an open subscheme of Hilbp(t)nHilb_{p(t)}^n and, for every srs\geq r', we describe it as a locally closed subscheme of the Grasmannian Grp(s)N(s)Gr_{p(s)}^{N(s)} given by a set of equations of degree deg(p(t))+2\leq \mathrm{deg}(p(t))+2 and linear inequalities in the coordinates of the Pl\"ucker embedding.Comment: v2: new proofs relying on the functorial definition of the Hilbert scheme. v3: Sections reorganized, new self-contained proof of the representability of the Hilbert functor with bounded regularity (Section 6

    Complete intersection singularities of splice type as universal abelian covers

    Get PDF
    It has long been known that every quasi-homogeneous normal complex surface singularity with Q-homology sphere link has universal abelian cover a Brieskorn complete intersection singularity. We describe a broad generalization: First, one has a class of complete intersection normal complex surface singularities called "splice type singularities", which generalize Brieskorn complete intersections. Second, these arise as universal abelian covers of a class of normal surface singularities with Q-homology sphere links, called "splice-quotient singularities". According to the Main Theorem, splice-quotients realize a large portion of the possible topologies of singularities with Q-homology sphere links. As quotients of complete intersections, they are necessarily Q-Gorenstein, and many Q-Gorenstein singularities with Q-homology sphere links are of this type. We conjecture that rational singularities and minimally elliptic singularities with Q-homology sphere links are splice-quotients. A recent preprint of T Okuma presents confirmation of this conjecture.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol9/paper17.abs.htm

    Real root finding for equivariant semi-algebraic systems

    Get PDF
    Let RR be a real closed field. We consider basic semi-algebraic sets defined by nn-variate equations/inequalities of ss symmetric polynomials and an equivariant family of polynomials, all of them of degree bounded by 2d<n2d < n. Such a semi-algebraic set is invariant by the action of the symmetric group. We show that such a set is either empty or it contains a point with at most 2d12d-1 distinct coordinates. Combining this geometric result with efficient algorithms for real root finding (based on the critical point method), one can decide the emptiness of basic semi-algebraic sets defined by ss polynomials of degree dd in time (sn)O(d)(sn)^{O(d)}. This improves the state-of-the-art which is exponential in nn. When the variables x1,,xnx_1, \ldots, x_n are quantified and the coefficients of the input system depend on parameters y1,,yty_1, \ldots, y_t, one also demonstrates that the corresponding one-block quantifier elimination problem can be solved in time (sn)O(dt)(sn)^{O(dt)}

    Shapes of free resolutions over a local ring

    Full text link
    We classify the possible shapes of minimal free resolutions over a regular local ring. This illustrates the existence of free resolutions whose Betti numbers behave in surprisingly pathological ways. We also give an asymptotic characterization of the possible shapes of minimal free resolutions over hypersurface rings. Our key new technique uses asymptotic arguments to study formal Q-Betti sequences.Comment: 14 pages, 1 figure; v2: sections have been reorganized substantially and exposition has been streamline

    Syzygies of torsion bundles and the geometry of the level l modular variety over M_g

    Full text link
    We formulate, and in some cases prove, three statements concerning the purity or, more generally the naturality of the resolution of various rings one can attach to a generic curve of genus g and a torsion point of order l in its Jacobian. These statements can be viewed an analogues of Green's Conjecture and we verify them computationally for bounded genus. We then compute the cohomology class of the corresponding non-vanishing locus in the moduli space R_{g,l} of twisted level l curves of genus g and use this to derive results about the birational geometry of R_{g, l}. For instance, we prove that R_{g,3} is a variety of general type when g>11 and the Kodaira dimension of R_{11,3} is greater than or equal to 19. In the last section we explain probabilistically the unexpected failure of the Prym-Green conjecture in genus 8 and level 2.Comment: 35 pages, appeared in Invent Math. We correct an inaccuracy in the statement of Prop 2.

    Lifting Grobner bases from the exterior algebra

    Full text link
    In the article "Non-commutative Grobner bases for commutative algebras", Eisenbud-Peeva-Sturmfels proved a number of results regarding Grobner bases and initial ideals of those ideals in the free associative algebra which contain the commutator ideal. We prove similar results for ideals which contains the anti-commutator ideal (the defining ideal of the exterior algebra). We define one notion of generic initial ideals in the free assoicative algebra, and show that gin's of ideals containing the commutator ideal, or the anti-commutator ideal, are finitely generated.Comment: 6 pages, LaTeX2

    Canonical decompositions of 3-manifolds

    Full text link
    We describe a new approach to the canonical decompositions of 3-manifolds along tori and annuli due to Jaco-Shalen and Johannson (with ideas from Waldhausen) - the so-called JSJ-decomposition theorem. This approach gives an accessible proof of the decomposition theorem; in particular it does not use the annulus-torus theorems, and the theory of Seifert fibrations does not need to be developed in advance.Comment: 20 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol1/paper3.abs.htm
    corecore