657 research outputs found

    Phase diagram of the one-dimensional half-filled extended Hubbard model

    Full text link
    We study the ground state of the one-dimensional half-filled Hubbard model with on-site (nearest-neighbor) repulsive interaction UU (VV) and nearest-neighbor hopping tt. In order to obtain an accurate phase diagram, we consider various physical quantities such as the charge gap, spin gap, Luttinger-liquid exponents, and bond-order-wave (BOW) order parameter using the density-matrix renormalization group technique. We confirm that the BOW phase appears in a substantial region between the charge-density-wave (CDW) and spin-density-wave phases. Each phase boundary is determined by multiple means and it allows us to do a cross-check to demonstrate the validity of our estimations. Thus, our results agree quantitatively with the renormalization group results in the weak-coupling regime (U2tU \lesssim 2t), with the perturbation results in the strong-coupling regime (U6tU \gtrsim 6t), and with the quantum Monte Carlo results in the intermediate-coupling regime. We also find that the BOW-CDW transition changes from continuous to first order at the tricritical point (Ut,Vt)(5.89t,3.10t)(U_{\rm t}, V_{\rm t}) \approx (5.89t, 3.10t) and the BOW phase vanishes at the critical end point (Uc,Vc)(9.25t,4.76t)(U_{\rm c}, V_{\rm c}) \approx (9.25t, 4.76t).Comment: 4 pages, 5 figure

    Peierls to superfluid crossover in the one-dimensional, quarter-filled Holstein model

    Full text link
    We use continuous-time quantum Monte Carlo simulations to study retardation effects in the metallic, quarter-filled Holstein model in one dimension. Based on results which include the one- and two-particle spectral functions as well as the optical conductivity, we conclude that with increasing phonon frequency the ground state evolves from one with dominant diagonal order---2k_F charge correlations---to one with dominant off-diagonal fluctuations, namely s-wave pairing correlations. In the parameter range of this crossover, our numerical results support the existence of a spin gap for all phonon frequencies. The crossover can hence be interpreted in terms of preformed pairs corresponding to bipolarons, which are essentially localised in the Peierls phase, and "condense" with increasing phonon frequency to generate dominant pairing correlations.Comment: 11 pages, 5 figure

    A Green's function decoupling scheme for the Edwards fermion-boson model

    Full text link
    Holes in a Mott insulator are represented by spinless fermions in the fermion-boson model introduced by Edwards. Although the physically interesting regime is for low to moderate fermion density the model has interesting properties over the whole density range. It has previously been studied at half-filling in the one-dimensional (1D) case by numerical methods, in particular exact diagonalization and density matrix renormalization group (DMRG). In the present study the one-particle Green's function is calculated analytically by means of a decoupling scheme for the equations of motion, valid for arbitrary density in 1D, 2D and 3D with fairly large boson energy and zero boson relaxation parameter. The Green's function is used to compute some ground state properties, and the one-fermion spectral function, for fermion densities n=0.1, 0.5 and 0.9 in the 1D case. The results are generally in good agreement with numerical results obtained by DMRG and dynamical DMRG and new light is shed on the nature of the ground state at different fillings. The Green's function approximation is sufficiently successful in 1D to justify future application to the 2D and 3D cases.Comment: 19 pages, 7 figures, final version with updated reference

    Local spectral properties of Luttinger liquids: scaling versus nonuniversal energy scales

    Full text link
    Motivated by recent scanning tunneling and photoemission spectroscopy measurements on self-organized gold chains on a germanium surface we reinvestigate the local single-particle spectral properties of Luttinger liquids. In the first part we use the bosonization approach to exactly compute the local spectral function of a simplified field theoretical low-energy model and take a closer look at scaling properties as a function of the ratio of energy and temperature. Translational invariant Luttinger liquids as well as those with an open boundary (cut chain geometry) are considered. We explicitly show that the scaling functions of both setups have the same analytic form. The scaling behavior suggests a variety of consistency checks which can be performed on measured data to experimentally verify Luttinger liquid behavior. In a second part we approximately compute the local spectral function of a microscopic lattice model---the extended Hubbard model---close to an open boundary using the functional renormalization group. We show that as a function of energy and temperature it follows the field theoretical prediction in the low-energy regime and point out the importance of nonuniversal energy scales inherent to any microscopic model. The spatial dependence of this spectral function is characterized by oscillatory behavior and an envelope function which follows a power law both in accordance with the field theoretical continuum model. Interestingly, for the lattice model we find a phase shift which is proportional to the two-particle interaction and not accounted for in the standard bosonization approach to Luttinger liquids with an open boundary. We briefly comment on the effects of several one-dimensional branches cutting the Fermi energy and Rashba spin-orbit interaction.Comment: 19 pages, 5 figures, version as accepted for publication in J. Phys.:Condensed Matte

    Anharmonicity in one-dimensional electron-phonon system

    Full text link
    We investigate the effect of anharmonicity on the one-dimensional half-filled Holstein model by using the determinant quantum Monte Carlo method. By calculating the order parameters we find that with and without anharmonicity there is always an transition from a disorder phase to a dimerized phase. Moreover, in the dimerized phase a lattice dimerization and a charge density wave coexist. The anharmonicity represented by the quartic term suppresses the dimerization as well as the charge density wave, while a double-well potential favors the dimerization. In addition, by calculating the correlation exponents we show that the disorder phase is metallic with gapless charge excitations and gapful spin excitations while in the dimerized phase both excitations are gapful.Comment: 5 page

    Linear response within the projection-based renormalization method: Many-body corrections beyond the random phase approximation

    Full text link
    The explicit evaluation of linear response coefficients for interacting many-particle systems still poses a considerable challenge to theoreticians. In this work we use a novel many-particle renormalization technique, the so-called projector-based renormalization method, to show how such coefficients can systematically be evaluated. To demonstrate the prospects and power of our approach we consider the dynamical wave-vector dependent spin susceptibility of the two-dimensional Hubbard model and also determine the subsequent magnetic phase diagram close to half-filling. We show that the superior treatment of (Coulomb) correlation and fluctuation effects within the projector-based renormalization method significantly improves the standard random phase approximation results.Comment: 17 pages, 7 figures, revised versio

    Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods

    Full text link
    We theoretically describe the charge ordering (CO) metal-insulator transition based on a quasi-one-dimensional extended Hubbard model, and investigate the finite temperature (TT) properties across the transition temperature, TCOT_{\rm CO}. In order to calculate TT dependence of physical quantities such as the spin susceptibility and the electrical resistivity, both above and below TCOT_{\rm CO}, a theoretical scheme is developed which combines analytical methods with numerical calculations. We take advantage of the renormalization group equations derived from the effective bosonized Hamiltonian, where Lanczos exact diagonalization data are chosen as initial parameters, while the CO order parameter at finite-TT is determined by quantum Monte Carlo simulations. The results show that the spin susceptibility does not show a steep singularity at TCOT_{\rm CO}, and it slightly increases compared to the case without CO because of the suppression of the spin velocity. In contrast, the resistivity exhibits a sudden increase at TCOT_{\rm CO}, below which a characteristic TT dependence is observed. We also compare our results with experiments on molecular conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure

    Theoretical Aspects of Charge Ordering in Molecular Conductors

    Full text link
    Theoretical studies on charge ordering phenomena in quarter-filled molecular (organic) conductors are reviewed. Extended Hubbard models including not only the on-site but also the inter-site Coulomb repulsion are constructed in a straightforward way from the crystal structures, which serve for individual study on each material as well as for their systematic understandings. In general the inter-site Coulomb interaction stabilizes Wigner crystal-type charge ordered states, where the charge localizes in an arranged manner avoiding each other, and can drive the system insulating. The variety in the lattice structures, represented by anisotropic networks in not only the electron hopping but also in the inter-site Coulomb repulsion, brings about diverse problems in low-dimensional strongly correlated systems. Competitions and/or co-existences between the charge ordered state and other states are discussed, such as metal, superconductor, and the dimer-type Mott insulating state which is another typical insulating state in molecular conductors. Interplay with magnetism, e.g., antiferromagnetic state and spin gapped state for example due to the spin-Peierls transition, is considered as well. Distinct situations are pointed out: influences of the coupling to the lattice degree of freedom and effects of geometrical frustration which exists in many molecular crystals. Some related topics, such as charge order in transition metal oxides and its role in new molecular conductors, are briefly remarked.Comment: 21 pages, 19 figures, to be published in J. Phys. Soc. Jpn. special issue on "Organic Conductors"; figs. 4 and 11 replaced with smaller sized fil

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S
    corecore