5,134 research outputs found
MERS-CoV (Middle East Respiratory Syndrome Coronavirus) outside the Arabian Peninsula an One Health approach: Understanding the role of wildlife, livestock and human in the virus dynamic
One of the big paradoxes of the MERS-CoV epidemiology is the apparent lack of human cases in large parts Africa where the virus and an animal host, the dromedary camel, are present. Understanding the differences between Africa and the Arabian Peninsula (where MERS-CoV is now endemic) would provide crucial understanding on how to reduce zoonotic infection. We set up field protocols for estimating (i) the prevalence of MERS-CoV infection in camel populations and other sensitive species outside Arabian Peninsula, (ii) the 'at risk' farming practices that facilitate transmission between camels, (iii) infection variation pattern in both camels and humans. The first project phase consisted in a descriptive serological and virological mapping of MERS-CoV in Africa and central Asia in camel populations (i.e. dromedary and Bactrian).The second project phase consists in a longitudinal epidemiological monitoring (monthly time step) in camel populations from Morocco and Ethiopia (blood, swabs, urine, milk); complemented by a questionnaire based survey of camel owners' practices. Finally, in parallel a cross-sectional sero-prevalence survey in human, particularly camel owners and animal workers in abattoirs is conducted by the Institut Pasteur in Morocco. A cross-sectional sero-prevalence survey is e also conducted on bats in houses and 'oasis' close to farms in Ethiopia. Addressing these questions is crucial for developing recommendations for animal and human health institutions and countries
Scaling study of the pion electroproduction cross sections and the pion form factor
The H()n cross section was measured for a range of
four-momentum transfer up to =3.91 GeV at values of the invariant
mass, , above the resonance region. The -dependence of the longitudinal
component is consistent with the -scaling prediction for hard exclusive
processes. This suggests that perturbative QCD concepts are applicable at
rather low values of . Pion form factor results, while consistent with the
-scaling prediction, are inconsistent in magnitude with perturbative QCD
calculations. The extraction of Generalized Parton Distributions from hard
exclusive processes assumes the dominance of the longitudinal term. However,
transverse contributions to the cross section are still significant at
=3.91 GeV.Comment: 6 pages, 3 figure
Study of the A(e,e') Reaction on H, H, C, Al, Cu and Au
Cross sections for the p()n process on H, H, C,
Al, Cu and Au targets were measured at the Thomas
Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the
nuclear transparencies. Data were taken for four-momentum transfers ranging
from =1.1 to 4.8 GeV for a fixed center of mass energy of =2.14
GeV. The ratio of and was extracted from the measured
cross sections for H, H, C and Cu targets at = 2.15
and 4.0 GeV allowing for additional studies of the reaction mechanism. The
experimental setup and the analysis of the data are described in detail
including systematic studies needed to obtain the results. The results for the
nuclear transparency and the differential cross sections as a function of the
pion momentum at the different values of are presented. Global features
of the data are discussed and the data are compared with the results of model
calculations for the p()n reaction from nuclear targets.Comment: 28 pages, 19 figures, submited to PR
Comment on the narrow structure reported by Amaryan et al
The CLAS Collaboration provides a comment on the physics interpretation of
the results presented in a paper published by M. Amaryan et al. regarding the
possible observation of a narrow structure in the mass spectrum of a
photoproduction experiment.Comment: to be published in Physical Review
Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab
MeV-GeV dark matter (DM) is theoretically well motivated but remarkably
unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential
for a 1 m segmented plastic scintillator detector placed downstream of the
beam-dump at one of the high intensity JLab experimental Halls, receiving up to
10 electrons-on-target (EOT) in a one-year period. This experiment
(Beam-Dump eXperiment or BDX) is sensitive to DM-nucleon elastic scattering at
the level of a thousand counts per year, with very low threshold recoil
energies (1 MeV), and limited only by reducible cosmogenic backgrounds.
Sensitivity to DM-electron elastic scattering and/or inelastic DM would be
below 10 counts per year after requiring all electromagnetic showers in the
detector to exceed a few-hundred MeV, which dramatically reduces or altogether
eliminates all backgrounds. Detailed Monte Carlo simulations are in progress to
finalize the detector design and experimental set up. An existing 0.036 m
prototype based on the same technology will be used to validate simulations
with background rate estimates, driving the necessary RD towards an
optimized detector. The final detector design and experimental set up will be
presented in a full proposal to be submitted to the next JLab PAC. A fully
realized experiment would be sensitive to large regions of DM parameter space,
exceeding the discovery potential of existing and planned experiments by two
orders of magnitude in the MeV-GeV DM mass range.Comment: 28 pages, 17 figures, submitted to JLab PAC 4
Scaling of the F_2 structure function in nuclei and quark distributions at x>1
We present new data on electron scattering from a range of nuclei taken in
Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the
cross section for , which is sensitive to short range contributions to the
nuclear wave-function, and in deep inelastic scattering corresponds to probing
extremely high momentum quarks. This result agrees with higher energy muon
scattering measurements, but is in sharp contrast to neutrino scattering
measurements which suggested a dramatic enhancement in the distribution of the
`super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in
^2H and ^3He, but nearly identical for all heavier nuclei.Comment: 5 pages, 4 figures, to be submitted to physical revie
The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)
Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for
the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by
the ANTARES Collaboratio
The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program
Papers on the ANTARES multi-messenger program, prepared for the 35th
International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the
ANTARES Collaboratio
- …
