266 research outputs found

    Foraging as an evidence accumulation process

    Full text link
    A canonical foraging task is the patch-leaving problem, in which a forager must decide to leave a current resource in search for another. Theoretical work has derived optimal strategies for when to leave a patch, and experiments have tested for conditions where animals do or do not follow an optimal strategy. Nevertheless, models of patch-leaving decisions do not consider the imperfect and noisy sampling process through which an animal gathers information, and how this process is constrained by neurobiological mechanisms. In this theoretical study, we formulate an evidence accumulation model of patch-leaving decisions where the animal averages over noisy measurements to estimate the state of the current patch and the overall environment. Evidence accumulation models belong to the class of drift diffusion processes and have been used to model decision making in different contexts. We solve the model for conditions where foraging decisions are optimal and equivalent to the marginal value theorem, and perform simulations to analyze deviations from optimal when these conditions are not met. By adjusting the drift rate and decision threshold, the model can represent different strategies, for example an increment-decrement or counting strategy. These strategies yield identical decisions in the limiting case but differ in how patch residence times adapt when the foraging environment is uncertain. To account for sub-optimal decisions, we introduce an energy-dependent utility function that predicts longer than optimal patch residence times when food is plentiful. Our model provides a quantitative connection between ecological models of foraging behavior and evidence accumulation models of decision making. Moreover, it provides a theoretical framework for potential experiments which seek to identify neural circuits underlying patch leaving decisions

    Triple-Product Correlations in B -> V1 V2$ Decays and New Physics

    Full text link
    In this paper we examine T-violating triple-product correlations (TP's) in B -> V1 V2 decays. TP's are excellent probes of physics beyond the standard model (SM) for two reasons: (i) within the SM, most TP's are expected to be tiny, and (ii) unlike direct CP asymmetries, TP's are not suppressed by the small strong phases which are expected in B decays. TP's are obtained via the angular analysis of B -> V1 V2. In a general analysis based on factorization, we demonstrate that the most promising decays for measuring TP's in the SM involve excited final-state vector mesons, and we provide estimates of such TP's. We find that there are only a handful of decays in which large TP's are possible, and the size of these TP's depends strongly on the size of nonfactorizable effects. We show that TP's which vanish in the SM can be very large in models with new physics. The measurement of a nonzero TP asymmetry in a decay where none is expected would specifically point to new physics involving large couplings to the right-handed b-quark.Comment: 42 pages, LaTeX, no figures. Title changed, several explanatory paragraphs added, references added, analysis and conclusions unchange

    Obtaining CKM Phase Information from B Penguin Decays

    Full text link
    We discuss a method for extracting CP phases from pairs of B decays which are related by flavor SU(3). One decay (B0 -> M1 M2) receives a significant bbar -> dbar penguin contribution. The second (B' -> M1' M2') has a significant bbar -> sbar penguin contribution, but is dominated by a single amplitude. CP phase information is obtained using the fact that the B' -> M1' M2' amplitude is related by SU(3) to a piece of the B0 -> M1 M2 amplitude. The leading-order SU(3)-breaking effect (~25%) responsible for the main theoretical error can be removed. For some decay pairs, it can be written in terms of known decay constants. In other cases, it involves a ratio of form factors. However, this form-factor ratio can either be measured experimentally, or eliminated by considering a double ratio of amplitudes. In all cases, one is left only with a second-order effect, ~5%. We find twelve pairs of B decays to which this method can be applied. Depending on the decay pair, we estimate the total theoretical error in relating the B' -> M1' M2' and B0 -> M1 M2 amplitudes to be between 5% and 15%. The most promising decay pairs are Bd -> pi+ pi- and Bu+ -> K0 pi+, and Bd -> D+ D- and Bd -> Ds+ D- or Bu+ -> Ds+ D0bar.Comment: 38 pages, JHEP format, no figures. Comments added to text regarding most promising decay pairs; references added; conclusions unchange

    Weak decays of the B_c meson to B_s and B mesons in the relativistic quark model

    Full text link
    Semileptonic and nonleptonic decays of the B_c meson to B_s and B mesons, caused by the c\to s,d quark transitions, are studied in the framework of the relativistic quark model. The heavy quark expansion in inverse powers of the active c and spectator \bar b quark is used to simplify calculations while the final s and d quarks in the B_s and B mesons are treated relativistically. The decay form factors are explicitly expressed through the overlap integrals of the meson wave functions in the whole accessible kinematical range. The obtained results are compared with the predictions of other approaches.Comment: 24 pages, 12 figures, version to appear in Eur. Phys. J.

    Decay constants, semi-leptonic and non-leptonic decays in a Bethe-Salpeter Model

    Full text link
    We evaluate the decay constants for the B and DD mesons and the form factors for the semileptonic decays of the B meson to DD and DD^* mesons in a Bethe-Salpeter model. From data we extract Vcb=0.039±0.002V_{cb}=0.039 \pm 0.002 from BˉDlνˉ{\bar B} \to D^* l {\bar{\nu}} and Vcb=0.037±0.004V_{cb}=0.037 \pm 0.004 from BˉDlνˉ{\bar B} \to D l {\bar{\nu}} decays. The form factors are then used to obtain non-leptonic decay partial widths for BDπ(K) B\to D \pi (K) and BDD(Ds)B \to D D (D_s) in the factorization approximation.Comment: 15 Pages, 3 Postscript figures (available also from [email protected]

    Weak decays of the B_c meson to charmonium and D mesons in the relativistic quark model

    Full text link
    Semileptonic and nonleptonic decays of the B_c meson to charmonium and D mesons are studied in the framework of the relativistic quark model. The decay form factors are explicitly expressed through the overlap integrals of the meson wave functions in the whole accessible kinematical range. The relativistic meson wave functions are used for the calculation of the decay rates. The obtained results are compared with the predictions of other approaches.Comment: 27 pages, 17 figures, 1 figure and 1 reference added, version to appear in Phys. Rev.

    The meson BcB_c annihilation to leptons and inclusive light hadrons

    Get PDF
    The annihilation of the BcB_c meson to leptons and inclusive light hadrons is analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find that the decay mode, which escapes from the helicity suppression, contributes a sizable fraction width. According to the analysis, the branching ratio due to the contribution from the color-singlet component of the meson BcB_c can be of order (10^{-2}). We also estimate the contributions from the color-octet components. With the velocity scaling rule of NRQCD, we find that the color-octet contributions are sizable too, especially, in certain phase space of the annihilation they are greater than (or comparative to) the color-singlet component. A few observables relevant to the spectrum of charged lepton are suggested, that may be used as measurements on the color-octet and color-singlet components in the future BcB_c experiments. A typical long distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.

    Rapid Self‐Assembly of Macroscale Tissue Constructs at Biphasic Aqueous Interfaces

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110853/1/adfm201403825-sup-0001-S1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/110853/2/adfm201403825.pd

    Decays of the Meson BcB_c to a PP-Wave Charmonium State χc\chi_c or hch_c

    Full text link
    The semileptonic decays, Bcχc(hc)++νB_{c}{\longrightarrow}{\chi_c}(h_c)+{\ell}+{{\nu}}_{\ell}, and the two-body nonleptonic decays, Bcχc(hc)+hB_{c}{\longrightarrow}{\chi_c}(h_c)+h, (here χc\chi_c and hch_c denote (ccˉ[3PJ])(c\bar c[^3P_J]) and (ccˉ[1P1])(c\bar c[^1P_1]) respectively, and hh indicates a meson) were computed. All of the form factors appearing in the relevant weak-current matrix elements with BcB_c as its initial state and a PP-wave charmonium state as its final state for the decays were precisely formulated in terms of two independent overlapping-integrations of the wave-functions of BcB_c and the PP-wave charmonium and with proper kinematics factors being `accompanied'. We found that the decays are quite sizable, so they may be accessible in Run-II at Tevatron and in the foreseen future at LHC, particularly, when BTeV and LHCB, the special detectors for B-physics, are borne in mind. In addition, we also pointed out that the decays Bchc+...B_c\to h_c+... may potentially be used as a fresh window to look for the hch_c charmonium state, and the cascade decays, Bcχc[3P1,2]+l+νlB_c\to \chi_c[^3P_{1,2}]+l+\nu_l (Bcχc[3P1,2]+hB_c\to \chi_c[^3P_{1,2}]+h) with one of the radiative decays χc[3P1,2]J/ψ+γ\chi_c[^3P_{1,2}] \to J/\psi+\gamma being followed accordingly, may affect the observations of BcB_c meson through the decays BcJ/ψ+l+νlB_{c}\to {J/\psi}+{l}+\nu_{l} (BcJ/ψ+hB_c\to J/\psi+h) substantially.Comment: 24 pages, 3 figures, the replacement for improving the presentation and adding reference
    corecore