203 research outputs found
Is Dark Matter made up of Massive Quark Objects?
We suggest that dark matter is made up of massive quark objects that have
survived from the Big Bang, representing the ground state of ``baryonic''
matter. Hence, there was no overall phase transition of the original quark
matter, but only a split-up into smaller objects. We speculate that normal
hadronic matter comes about through enforced phase transitions when such
objects merge or collide, which also gives rise to the cosmic gamma-ray bursts.Comment: 8 pages Latex, no figures; to be published in the Proceedings of Dark
'98, Heidelberg, July 199
The Chandrasekhar limit for quark stars
The Chandrasekhar limit for quark stars is evaluated from simple energy
balance relations, as proposed by Landau for white dwarfs or neutron stars. It
has been found that the limit for quark stars depends on, in addition to the
fundamental constants, the Bag constant.Comment: LateX fil
A Quark-Matter Dominated Universe
We present a new scenario for the development of the Universe after the Big
Bang, built on the conjecture that a vast majority of the primordial quark
matter did not undergo a phase transition to normal nuclear matter, but rather
split up into massive quark objects that remained stable. Hence, such
primordial quark matter would make up the so-called dark matter. We discuss,
mostly in qualitative terms, the consequences for galaxy formation, the origin
of normal matter, the occurrence of massive black-holes in galactic centres and
the cosmic gamma-ray bursts.Comment: 32 pages Latex, 3 postscipt figure
Vapor phase growth technique and system for several III-V compound semiconductors Interim scientific report
Vapor phase growth method for single crystalline preparation of gallium nitride, gallium arsenide alloy, and gallium antimonide allo
Fine Particulate Air Pollution and Total Mortality Among Elderly Californians, 1973–2002
Adaptive and Innate Immune Responses in Autism: Rationale for Therapeutic Use of Intravenous Immunoglobulin
Autism is a complex polygenic neurodevelopmental disorder characterized by deficits in communication and social interactions as well as specific stereotypical behaviors. Both genetic and environmental factors appear to contribute to the pathogenesis of autism. Accumulating data including changes in immune responses, linkage to major histocompatibility complex antigens, and the presence of autoantibodies to neural tissues/antigens suggest that the immune system plays an important role in its pathogenesis.
In this brief review, we discuss the data regarding changes in both innate and adaptive immunity in autism and the evidence in favor of the role of the immune system, especially of maternal autoantibodies in the pathogenesis of a subset of patients with autism. The rationale for possible therapeutic use of intravenous immunoglobulin is also discussed
Environmental Tobacco Smoke and Coronary Heart Disease Mortality in the United States—A Meta-Analysis and Critique
S100B Protein, Brain-Derived Neurotrophic Factor, and Glial Cell Line-Derived Neurotrophic Factor in Human Milk
Human milk contains a wide variety of nutrients that contribute to the fulfillment of its functions, which include the regulation of newborn development. However, few studies have investigated the concentrations of S100B protein, brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) in human milk. The associations of the concentrations of S100B protein, BDNF, and GDNF with maternal factors are not well explored.To investigate the concentrations of S100B protein, BDNF, and GDNF in human milk and characterize the maternal factors associated with their levels in human milk, human milk samples were collected at days 3, 10, 30, and 90 after parturition. Levels of S100B protein, BDNF, and GDNF, and their mRNAs in the samples were detected. Then, these concentrations were compared with lactation and other maternal factors. S100B protein levels in human milk samples collected at 3, 10, 30, and 90 d after parturition were 1249.79±398.10, 1345.05±539.16, 1481.83±573.30, and 1414.39±621.31 ng/L, respectively. On the other hand, the BDNF concentrations in human milk samples were 10.99±4.55, 13.01±5.88, 13.35±6.43, and 2.83±5.47 µg/L, while those of GDNF were 10.90±1.65, 11.38±1., 11.29±3.10, and 11.40±2.21 g/L for the same time periods. Maternal post-pregnancy body mass index was positively associated with S100B levels in human milk (r = 0.335, P = 0.030<0.05). In addition, there was a significant correlation between the levels of S100B protein and BDNF (z = 2.09, P = 0.037<0.05). Delivery modes were negatively associated with the concentration of GDNF in human milk.S100B protein, BDNF, and GDNF are present in all samples of human milk, and they may be responsible for the long term effects of breast feeding
Autoimmune disease in mothers with the FMR1 premutation is associated with seizures in their children with fragile X syndrome
An increased prevalence of autoimmune diseases in family members of children with autism spectrum disorders (ASD) has been previously reported. ASD is also a common problem co-occurring in children with fragile X syndrome (FXS). Why ASD occurs in some individuals with FXS, but not all, is largely unknown. Furthermore, in premutation carrier mothers, there is an increased risk for autoimmune diseases. This study compared the rate of ASD and other neurodevelopmental/behavioral problems in 61 children with FXS born to 41 carrier mothers who had autoimmune disease and in 97 children with FXS of 78 carrier mothers who did not have autoimmune disease. There were no significant differences in the mean age (9.61 ± 5.59 vs. 9.41 ± 6.31, P = 0.836), cognitive and adaptive functioning in children of mothers with and without autoimmune disease. Among children whose mothers had autoimmune disease, the odds ratio (OR) for ASD was 1.27 (95% CI 0.62–2.61, P = 0.5115). Interestingly, the OR for seizures and tics was 3.81 (95% CI 1.13–12.86, P = 0.031) and 2.94 (95% CI 1.19–7.24, P = 0.019), respectively, in children of mothers with autoimmune disease compared to children of mothers without autoimmune disease. In conclusion, autoimmune disease in carrier mothers was not associated with the presence of ASD in their children. However, seizures and tics were significantly increased in children of mothers with autoimmune disease. This suggests a potential new mechanism of seizure and tic exacerbation in FXS related to an intergenerational influence from autoimmunity in the carrier mother
- …
