2,170 research outputs found

    SWEET11 and 15 as key players in seed filling in rice

    No full text

    Thickness dependent magnetotransport in ultra-thin manganite films

    Full text link
    To understand the near-interface magnetism in manganites, uniform, ultra-thin films of La_{0.67}Sr_{0.33}MnO_3 were grown epitaxially on single crystal (001) LaAlO_3 and (110) NdGaO_3 substrates. The temperature and magnetic field dependent film resistance is used to probe the film's structural and magnetic properties. A surface and/or interface related dead-layer is inferred from the thickness dependent resistance and magnetoresistance. The total thickness of the dead layer is estimated to be 30A˚\sim 30 \AA for films on NdGaO_3 and 50A˚\sim 50 \AA for films on LaAlO_3.Comment: 11 pages, 4 figure

    Coexistence of superconductivity and ferromagnetism in two dimensions

    Full text link
    Ferromagnetism is usually considered to be incompatible with conventional superconductivity, as it destroys the singlet correlations responsible for the pairing interaction. Superconductivity and ferromagnetism are known to coexist in only a few bulk rare-earth materials. Here we report evidence for their coexistence in a two-dimensional system: the interface between two bulk insulators, LaAlO3_3 (LAO) and SrTiO3_3 (STO), a system that has been studied intensively recently. Magnetoresistance, Hall and electric-field dependence measurements suggest that there are two distinct bands of charge carriers that contribute to the interface conductivity. The sensitivity of properties of the interface to an electric field make this a fascinating system for the study of the interplay between superconductivity and magnetism.Comment: 4 pages, 4 figure

    Magnetotransport and the upper critical magnetic field in MgB2

    Full text link
    Magnetotransport measurements are presented on polycrystalline MgB2 samples. The resistive upper critical magnetic field reveals a temperature dependence with a positive curvature from Tc = 39.3 K down to about 20 K, then changes to a slightly negative curvature reaching 25 T at 1.5 K. The 25- Tesla upper critical field is much higher than what is known so far on polycrystals of MgB2 but it is in agreement with recent data obtained on epitaxial MgB2 films. The deviation of Bc2(T) from standard BCS might be due to the proposed two-gap superconductivity in this compound. The observed quadratic normal-state magnetoresistance with validity of Kohler's rule can be ascribed to classical trajectory effects in the low-field limit.Comment: 6 pages, incl. 3 figure

    Entanglement witnesses arising from Choi type positive linear maps

    Full text link
    We construct optimal PPTES witnesses to detect 333\otimes 3 PPT entangled edge states of type (6,8)(6,8) constructed recently \cite{kye_osaka}. To do this, we consider positive linear maps which are variants of the Choi type map involving complex numbers, and examine several notions related to optimality for those entanglement witnesses. Through the discussion, we suggest a method to check the optimality of entanglement witnesses without the spanning property.Comment: 18 pages, 4 figures, 1 tabl

    Observation of a coherence peak and pair-breaking effects in THz conductivity of BaFe22x_{2-2x}Co2x_{2x}As2_2

    Full text link
    We report a study of high quality pnictide superconductor BaFe1.84_{1.84}Co0.16_{0.16}As2_2 thin films using time-domain THz spectroscopy. Near Tc_c we find evidence for a coherence peak and qualitative agreement with the weak-coupling Mattis-Bardeen form of the conductivity. At low temperature, we find that the real part of the THz conductivity is not fully suppressed and σ2\sigma_2 is significantly smaller than the Matthis-Bardeen expectation. The temperature dependence of the penetration depth λ\lambda follows a power law with an unusually high exponent of 3.1. We interpret these results as consistent with impurity scattering induced pair-breaking. Taken together our results are strong evidence for an extended s±\pm symmetry order parameter.Comment: 4.2 pages, 4 figures, submitted. v2: references format corrected, no change to tex

    In-situ Magnesium Diboride Superconducting Thin Films grown by Pulsed Laser Deposition

    Full text link
    Superconducting thin films of MgB2 were deposited by Pulsed Laser Deposition on magnesium oxide and sapphire substrates. Samples grown at 450C in an argon buffer pressure of about 10-2 mbar by using a magnesium enriched target resulted to be superconducting with a transition temperature of about 25 K. Film deposited from a MgB2 sintered pellet target in ultra high vacuum conditions showed poor metallic or weak semiconducting behavior and they became superconducting only after an ex-situ annealing in Mg vapor atmosphere. Up to now, no difference in the superconducting properties of the films obtained by these two procedures has been evidenced.Comment: 10 pages, 4 figure

    Conductance asymmetry in point-contacts on epitaxial thin films of Ba(Fe0.92_{0.92}Co0.08_{0.08})2_2As2_2

    Full text link
    Point-contact spectroscopy is a powerful tool for probing superconductors. One of the most common observations in the point-contact spectra on the recently discovered ferropnictide superconductors is a large conductance asymmetry with respect to voltage across the point-contact. In this paper we show that the antisymmetric part of the point-contact spectrum between a silver tip and an epitaxial thin film of Ba(Fe0.92_{0.92}Co0.08_{0.08})2_2As2_2 shows certain unique features. These features have an interesting evolution with increasing temperature up to a temperature that is 30% larger than the critical temperature TcT_c of the superconductor. We argue that this evolution can be associated with the rich normal state properties of these materials.Comment: 4 pages, 2 figure
    corecore