4,137 research outputs found
Contact and crack problems for an elastic wedge
The contact and the crack problems for an elastic wedge of arbitrary angle are considered. The problem is reduced to a singular integral equation which, in the general case, may have a generalized Cauchy kernel. The singularities under the stamp as well as at the wedge apex were studied, and the relevant stress intensity factors are defined. The problem was solved for various wedge geometries and loading conditions. The results may be applicable to certain foundation problems and to crack problems in symmetrically loaded wedges in which cracks initiate from the apex
Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra
The spectral characteristics of a fiber Bragg grating (FBG) with a
transversely inhomogeneous refractive index profile, differs con- siderably
from that of a transversely uniform one. Transmission spectra of inhomogeneous
and asymmetric FBGs that have been inscribed with focused ultrashort pulses
with the so-called point-by-point technique are investigated. The cladding mode
resonances of such FBGs can span a full octave in the spectrum and are very
pronounced (deeper than 20dB). Using a coupled-mode approach, we compute the
strength of resonant coupling and find that coupling into cladding modes of
higher azimuthal order is very sensitive to the position of the modification in
the core. Exploiting these properties allows precise control of such
reflections and may lead to many new sensing applications.Comment: Submission to OE, 16 pages, 6 figure
Modification of surface energy in nuclear multifragmentation
Within the statistical multifragmentation model we study modifications of the
surface and symmetry energy of primary fragments in the freeze-out volume. The
ALADIN experimental data on multifragmentation obtained in reactions induced by
high-energy projectiles with different neutron richness are analyzed. We have
extracted the isospin dependence of the surface energy coefficient at different
degrees of fragmentation. We conclude that the surface energy of hot fragments
produced in multifragmentation reactions differs from the values extracted for
isolated nuclei at low excitation. At high fragment multiplicity, it becomes
nearly independent of the neutron content of the fragments.Comment: 11 pages with 13 figure
The GREGOR Fabry-P\'erot Interferometer
The GREGOR Fabry-P\'erot Interferometer (GFPI) is one of three first-light
instruments of the German 1.5-meter GREGOR solar telescope at the Observatorio
del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated
mounting. Thanks to its large-format, high-cadence CCD detectors with
sophisticated computer hard- and software it is capable of scanning spectral
lines with a cadence that is sufficient to capture the dynamic evolution of the
solar atmosphere. The field-of-view (FOV) of 50" x 38" is well suited for quiet
Sun and sunspot observations. However, in the vector spectropolarimetric mode
the FOV reduces to 25" x 38". The spectral coverage in the spectroscopic mode
extends from 530-860 nm with a theoretical spectral resolution R of about
250,000, whereas in the vector spectropolarimetric mode the wavelength range is
at present limited to 580-660 nm. The combination of fast narrow-band imaging
and post-factum image restoration has the potential for discovery science
concerning the dynamic Sun and its magnetic field at spatial scales down to
about 50 km on the solar surface.Comment: 14 pages, 17 figures, 4 tables; pre-print of AN 333, p.880-893, 2012
(AN special issue to GREGOR
Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states
Photonic analogues of the relativistic Kronig-Penney model and of
relativistic surface Tamm states are proposed for light propagation in fibre
Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in
the FBG realizes the relativistic Kronig-Penney model, the band structure of
which being mapped into the spectral response of the FBG. For the semi-infinite
FBG Tamm surface states can appear and can be visualized as narrow resonance
peaks in the transmission spectrum of the grating
Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams
We theoretically investigate the use of red-detuned Laguerre-Gaussian (LG)
laser beams of varying azimuthal mode index for producing toroidal optical
dipole traps in two-dimensional atomic Bose-Einstein condensates. Higher-order
LG beams provide deeper potential wells and tighter confinement for a fixed
toroid radius and laser power. Numerical simulations of the loading of the
toroidal trap from a variety of initial conditions is also given.Comment: 12 pages, 5 figures, submitted to Phys. Rev.
Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium
In this paper, we discuss the transport phenomena of electromagnetic waves in
a two-dimensional random system which is composed of arrays of electrical
dipoles, following the model presented earlier by Erdogan, et al. (J. Opt. Soc.
Am. B {\bf 10}, 391 (1993)). A set of self-consistent equations is presented,
accounting for the multiple scattering in the system, and is then solved
numerically. A strong localization regime is discovered in the frequency
domain. The transport properties within, near the edge of and nearly outside
the localization regime are investigated for different parameters such as
filling factor and system size. The results show that within the localization
regime, waves are trapped near the transmitting source. Meanwhile, the
diffusive waves follow an intuitive but expected picture. That is, they
increase with travelling path as more and more random scattering incurs,
followed by a saturation, then start to decay exponentially when the travelling
path is large enough, signifying the localization effect. For the cases that
the frequencies are near the boundary of or outside the localization regime,
the results of diffusive waves are compared with the diffusion approximation,
showing less encouraging agreement as in other systems (Asatryan, et al., Phys.
Rev. E {\bf 67}, 036605 (2003).)Comment: 8 pages 9 figure
Localization of electromagnetic waves in a two dimensional random medium
Motivated by previous investigations on the radiative effects of the electric
dipoles embedded in structured cavities, localization of electromagnetic waves
in two dimensions is studied {\it ab initio} for a system consisting of many
randomly distributed two dimensional dipoles. A set of self-consistent
equations, incorporating all orders of multiple scattering of the
electromagnetic waves, is derived from first principles and then solved
numerically for the total electromagnetic field. The results show that
spatially localized electromagnetic waves are possible in such a simple but
realistic disordered system. When localization occurs, a coherent behavior
appears and is revealed as a unique property differentiating localization from
either the residual absorption or the attenuation effects
Proactive and politically skilled professionals: What is the relationship with affective occupational commitment?
The aim of this study is to extend research on employee affective commitment in three ways: (1) instead of organizational commitment the focus is on occupational commitment; (2) the role of proactive personality on affective occupational commitment is examined; and (3) occupational satisfaction is examined as a mediator and political skills as moderator in the relationship between proactive personality and affective occupational commitment. Two connected studies, one in a hospital located in the private sector and one in a university located in the public sector, are carried out in Pakistan, drawing on a total sample of over 400 employees. The results show that proactive personality is positively related to affective occupational commitment, and that occupational satisfaction partly mediates the relationship between proactive personality and affective occupational commitment. No effect is found for a moderator effect of political skills in the relationship between proactive personality and affective occupational commitment. Political skills however moderate the relationship between proactive personality and affective organizational commitment
Jim Starnes' Contributions to Residual Strength Analysis Methods for Metallic Structures
A summary of advances in residual strength analyses methods for metallic structures that were realized under the leadership of Dr. James H. Starnes, Jr., is presented. The majority of research led by Dr. Starnes in this area was conducted in the 1990's under the NASA Airframe Structural Integrity Program (NASIP). Dr. Starnes, respectfully referred to herein as Jim, had a passion for studying complex response phenomena and dedicated a significant amount of research effort toward advancing damage tolerance and residual strength analysis methods for metallic structures. Jim's efforts were focused on understanding damage propagation in built-up fuselage structure with widespread fatigue damage, with the goal of ensuring safety in the aging international commercial transport fleet. Jim's major contributions in this research area were in identifying the effects of combined internal pressure and mechanical loads, and geometric nonlinearity, on the response of built-up structures with damage. Analytical and experimental technical results are presented to demonstrate the breadth and rigor of the research conducted in this technical area. Technical results presented herein are drawn exclusively from papers where Jim was a co-author
- …
