366 research outputs found
Investigating the physics and environment of lyman limit systems in cosmological simulations
In this work, I investigate the properties of Lyman limit systems (LLSs)
using state-of-the-art zoom-in cosmological galaxy formation simulations with
on the fly radiative transfer, which includes both the cosmic UV background
(UVB) and local stellar sources. I compare the simulation results to
observations of the incidence frequency of LLSs and the HI column density
distribution function over the redshift range and find good agreement.
I explore the connection between LLSs and their host halos and find that LLSs
reside in halos with a wide range of halo masses with a nearly constant
covering fraction within a virial radius. Over the range , I find that
more than half of the LLSs reside in halos with ,
indicating that absorption line studies of LLSs can probe these low-mass
galaxies which H-based star formation models predict to have very little
star formation. I study the physical state of individual LLSs and test a simple
model (Schaye 2001) which encapsulates many of their properties. I confirm that
LLSs have a characteristic absorption length given by the Jeans length and that
they are in photoionization equilibrium at low column densities. Finally, I
investigate the self-shielding of LLSs to the UVB and explore how the
non-sphericity of LLSs affects the photoionization rate at a given . I find that at , LLSs have an optical depth of unity at a
column density of and that this is the column
density which characterizes the onset of self-shielding.This work was supported in part
by the NSF grant AST-0908063, and by the NASA grant NNX-
09AJ54G. The simulations used in this work have been performed
on the Joint Fermilab - KICP Supercomputing Cluster, supported
by grants from Fermilab, Kavli Institute for Cosmological Physics,
and the University of Chicago.This is the final version. It was first published by OUP at http://mnras.oxfordjournals.org/content/451/1/904.abstract?sid=5f7e04bf-6176-4b8f-bc81-ae4f70107d18
Properties of dark subhaloes from gaps in tidal streams
Cold or Warm, the Dark Matter substructure spectrum must extend to objects
with masses as low as , according to the most recent
Lyman- measurements. Around a Milky Way-like galaxy, more than a
thousand of these subhaloes will not be able to form stars but are dense enough
to survive even deep down in the potential well of their host. There, within
the stellar halo, these dark pellets will bombard tidal streams as they travel
around the Galaxy, causing small but recognizable damage to the stream density
distribution. The detection and characterization of these stream ruptures will
allow us to constrain the details of the subhalo-stream interaction. In this
work, for the first time, we will demonstrate how the properties of a subhalo,
most importantly its mass and size, can be reliably inferred from the gap it
produces in a tidal stream. For a range of realistic observational setups,
mimicking e.g. SDSS, DES, Gaia and LSST data, we find that it is possible to
measure the {\it complete set} of properties (including the phase-space
coordinates during the flyby) of dark perturbers with , up to a
1d degeneracy between the mass and velocity.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007- 2013)/ERC Grant Agreement no. 308024.This is the author accepted manuscript. The final version is available from Oxford University Press via http://dx.doi.org/10.1093/mnras/stv212
Forensics of subhalo-stream encounters: The three phases of gap growth
There is hope to discover dark matter subhalos free of stars (predicted by
the current theory of structure formation) by observing gaps they produce in
tidal streams. In fact, this is the most promising technique for dark
substructure detection and characterization as such gaps grow with time,
magnifying small perturbations into clear signatures observable by ongoing and
planned Galaxy surveys. To facilitate such future inference, we develop a
comprehensive framework for studies of the growth of the stream density
perturbations. Starting with simple assumptions and restricting to streams on
circular orbits, we derive analytic formulae that describe the evolution of all
gap properties (size, density contrast etc) at all times. We uncover complex,
previously unnoticed behavior, with the stream initially forming a density
enhancement near the subhalo impact point. Shortly after, a gap forms due to
the relative change in period induced by the subhalo's passage. There is an
intermediate regime where the gap grows linearly in time. At late times, the
particles in the stream overtake each other, forming caustics, and the gap
grows like . In addition to the secular growth, we find that the gap
oscillates as it grows due to epicyclic motion. We compare this analytic model
to N-body simulations and find an impressive level of agreement. Importantly,
when analyzing the observation of a single gap we find a large degeneracy
between the subhalo mass, the impact geometry and kinematics, the host
potential and the time since flyby.The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 308024.This is the final published version of the article. It was originally published in the Monthly Notices of the Royal Astronomical Society (Erkal D, Belokurov V, MNRAS, 2015, 450, 1136-1149, doi:10.1093/mnras/stv655). The final version is available at http://dx.doi.org/10.1093/mnras/stv655 This article has been accepted for publication in the Monthly Notices of the Royal Astronomical Society ©: 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved
Cultural Transmission of Work-Welfare Attitudes and the Intergenerational Correlation in Welfare Receipt
This paper considers the potential for the cultural transmission of attitudes toward work, welfare, and individual responsibility to explain the intergenerational correlation in welfare receipt. Specifically, we investigate whether 18-year olds’ views about social benefits and the drivers of social inequality depend on their families’ welfare histories. We begin by incorporating welfare receipt into a theoretical model of the cultural transmission of work-welfare attitudes across generations. Consistent with the predictions of our model, we find that young people’s attitudes towards work and welfare are shaped by socialization within their families. Young people are more likely to oppose generous social benefits and adopt an internal view of social inequality if their mothers support these views, if their mothers were employed while they were growing up, and if their families never received welfare. These results are consistent with —though do not definitively establish— the existence of an intergenerational welfare culture.cultural transmission, attitudes, intergenerational welfare receipt
Revealing the tidal scars of the Small Magellanic Cloud
Due to their close proximity, the Large and Small Magellanic Clouds (SMC/LMC)
provide natural laboratories for understanding how galaxies form and evolve.
With the goal of determining the structure and dynamical state of the SMC, we
present new spectroscopic data for 3000 SMC red giant branch stars
observed using the AAOmega spectrograph at the Anglo-Australian Telescope. We
complement our data with further spectroscopic measurements from previous
studies that used the same instrumental configuration and proper motions from
the \textit{Gaia} Data Release 2 catalogue. Analysing the photometric and
stellar kinematic data, we find that the SMC centre of mass presents a
conspicuous offset from the velocity centre of its associated \mbox{H\,{\sc
i}} gas, suggesting that the SMC gas is likely to be far from dynamical
equilibrium. Furthermore, we find evidence that the SMC is currently undergoing
tidal disruption by the LMC within 2\,kpc of the centre of the SMC, and
possibly all the way in to the very core. This is evidenced by a net outward
motion of stars from the SMC centre along the direction towards the LMC and
apparent tangential anisotropy at all radii. The latter is expected if the SMC
is undergoing significiant tidal stripping, as we demonstrate using a suite of
-body simulations of the SMC/LMC system disrupting around the Milky Way.
These results suggest that dynamical models for the SMC that assume a steady
state will need to be revisited.Comment: Revised version submitted to MNRAS after referee report, 18 pages, 18
figure
Stray, swing and scatter: Angular momentum evolution of orbits and streams in aspherical potentials
In aspherical potentials orbital planes continuously evolve. The
gravitational torques impel the angular momentum vector to precess, that is to
slowly stray around the symmetry axis, and nutate, i.e. swing up and down
periodically in the perpendicular direction. This familiar orbital pole motion
- if detected and measured - can reveal the shape of the underlying
gravitational potential, the quantity only crudely gauged in the Galaxy so far.
Here we demonstrate that the debris poles of stellar tidal streams show a very
similar straying and swinging behavior, and give analytic expressions to link
the amplitude and the frequency of the pole evolution to the flattening of the
dark matter distribution. While these results are derived for near-circular
orbits, we show they are also valid for eccentric orbits. Most importantly, we
explain how the differential orbital plane precession leads to the broadening
of the stream and show that streams on polar orbits ought to scatter faster. We
provide expressions for the stream width evolution as a function of the
axisymmetric potential flattening and the angle from the symmetry plane and
prove that our models are in good agreement with streams produced in N-body
simulations. Interestingly, the same intuition applies to streams whose
progenitors are on short or long-axis loops in a triaxial potential. Finally,
we present a compilation of the Galactic cold stream data, and discuss how the
simple picture developed here, along with stream modelling, can be used to
constrain the symmetry axes and flattening of the Milky Way.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 308024. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stw140
Amyloid Inspired Self-Assembled Peptide Nanofibers
Cataloged from PDF version of article.Amyloid peptides are important components in many degenerative
diseases as well as in maintaining cellular metabolism. Their unique stable structure
provides new insights in developing new materials. Designing bioinspired selfassembling
peptides is essential to generate new forms of hierarchical nanostructures.
Here we present oppositely charged amyloid inspired peptides (AIPs),
which rapidly self-assemble into nanofibers at pH 7 upon mixing in water caused
by noncovalent interactions. Mechanical properties of the gels formed by selfassembled
AIP nanofibers were analyzed with oscillatory rheology. AIP gels
exhibited strong mechanical characteristics superior to gels formed by self-assembly
of previously reported synthetic short peptides. Rheological studies of gels
composed of oppositely charged mixed AIP molecules (AIP-1 + 2) revealed superior mechanical stability compared to individual
peptide networks (AIP-1 and AIP-2) formed by neutralization of net charges through pH change. Adhesion and elasticity
properties of AIP mixed nanofibers and charge neutralized AIP-1, AIP-2 nanofibers were analyzed by high resolution force−
distance mapping using atomic force microscopy (AFM). Nanomechanical characterization of self-assembled AIP-1 + 2, AIP-1,
and AIP-2 nanofibers also confirmed macroscopic rheology results, and mechanical stability of AIP mixed nanofibers was higher
compared to individual AIP-1 and AIP-2 nanofibers self-assembled at acidic and basic pH, respectively. Experimental results were
supported with molecular dynamics simulations by considering potential noncovalent interactions between the amino acid
residues and possible aggregate forms. In addition, HUVEC cells were cultured on AIP mixed nanofibers at pH 7 and biocompatibility
and collagen mimetic scaffold properties of the nanofibrous system were observed. Encapsulation of a zwitterionic
dye (rhodamine B) within AIP nanofiber network was accomplished at physiological conditions to demonstrate that this network
can be utilized for inclusion of soluble factors as a scaffold for cell culture studies. Copyright © 2012 American Chemical Societ
Yangian Symmetry at Two Loops for the su(2|1) Sector of N=4 SYM
We present the perturbative Yangian symmetry at next-to-leading order in the
su(2|1) sector of planar N=4 SYM. Just like the ordinary symmetry generators,
the bi-local Yangian charges receive corrections acting on several neighboring
sites. We confirm that the bi-local Yangian charges satisfy the necessary
conditions: they transform in the adjoint of su(2|1), they commute with the
dilatation generator, and they satisfy the Serre relations. This proves that
the sector is integrable at two loops.Comment: 13 pages, v2: minor correction
Rho primes in analyzing e+e- annihilation, MARK III, LASS and ARGUS data
The results of an analysis are presented of some recent data on the reactions
, with the
subtracted events, , , , , the decays
,
, upon taking into account both the strong energy
dependence of the partial widths on energy and the previously neglected mixing
of the type resonances. The above effects are shown to exert an
essential influence on the specific values of masses and coupling constants of
heavy resonances and hence are necessary to be accounted for in establishing
their true nature.Comment: 20 pages, ReVTeX, 9 Postscript figures As compared to hep-ph/9607398,
new material concerning the analysis of the ARGUS data on the tau decays into
four pion hadronic states is adde
- …
