550 research outputs found

    A new limit on the CP violating decay KS -> 3pi0 with the KLOE experiment

    Full text link
    We have carried out a new direct search for the CP violating decay KS -> 3pi0 with 1.7 fb^-1 of e+e- collisions collected by the KLOE detector at the phi-factory DAFNE. We have searched for this decay in a sample of about 5.9 x 10^8 KS KL events tagging the KS by means of the KL interaction in the calorimeter and requiring six prompt photons. With respect to our previous search, the analysis has been improved by increasing of a factor four the tagged sample and by a more effective background rejection of fake KS tags and spurious clusters. We find no candidates in data and simulated background samples, while we expect 0.12 standard model events. Normalizing to the number of KS -> 2pi0 events in the same sample, we set the upper limit on BR(KS -> 3pi0 < 2.6 x 10^-8 at 90% C.L., five times lower than the previous limit. We also set the upper limit on the eta_000 parameter, |eta_000 | < 0.0088 at 90% C.L., improving by a factor two the latest direct measurement.Comment: Accepted for publication in Physics Letters B (15 pages, 13 figures

    A High Statistics Search for Electron-Neutrino --> Tau-Neutrino Oscillations

    Full text link
    We present new limits on nu_e to nu_tau and nu_e to nu_sterile oscillations by searching for electron neutrino dissappearance in the high-energy wide-band CCFR neutrino beam. Sensitivity to nu_tau appearance comes from tau decay modes in which a large fraction of the energy deposited is electromagnetic. The beam is composed primarily of muon neutrinos but this analysis uses the 2.3% electron neutrino component of the beam. Electron neutrino energies range from 30 to 600 GeV and flight lengths vary from 0.9 to 1.4 km. This limit improves the sensitivity of existing limits and obtains a lowest 90% confidence upper limit in sin**2(2*alpha) of 9.9 x 10**(-2) at delta-m**2 of 125 eV**2.Comment: submitted to Phys. Rev. D. Rapid Com

    Atmospheric neutrino flux from 3-dimensional simulation

    Full text link
    The atmospheric muon and neutrino flux have been simulated using the same approach which successfully accounted for the recent secondary proton, electron and positron flux measurements in orbit by the AMS experiment. For the muon flux, a good agreement is obtained with the CAPRICE and HEAT data for altitudes ranging from sea level up to about 38 km. The general features of the calculated atmospheric neutrino flux are reported and discussed. The flux obtained at the Super-Kamiokande experiment location are reported and compared with other calculations. For low neutrino energies the flux obtained is significantly smaller than that used in the data analysis of underground experiment. The simulation results for the SOUDAN experiment site are also reported.Comment: 33 pages, 27 figures, 12 tables, final version for Phys. Rev.

    Search for Nucleon Decays induced by GUT Magnetic Monopoles with the MACRO Experiment

    Get PDF
    The interaction of a Grand Unification Magnetic Monopole with a nucleon can lead to a barion-number violating process in which the nucleon decays into a lepton and one or more mesons (catalysis of nucleon decay). In this paper we report an experimental study of the effects of a catalysis process in the MACRO detector. Using a dedicated analysis we obtain new magnetic monopole (MM) flux upper limits at the level of 31016cm2s1sr1\sim 3\cdot 10^{-16} cm^{-2} s^{-1} sr^{-1} for 1.1104β51031.1\cdot 10^{-4} \le |\beta| \le 5\cdot 10^{-3}, based on the search for catalysis events in the MACRO data. We also analyze the dependence of the MM flux limit on the catalysis cross section.Comment: 12 pages, Latex, 10 figures and 2 Table

    Muon Energy Estimate Through Multiple Scattering with the Macro Detector

    Get PDF
    Muon energy measurement represents an important issue for any experiment addressing neutrino induced upgoing muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDC's included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for Eμ<E_\mu<40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data.Comment: 25 pages, 11 figures, Submitted to Nucl. Instr. & Meth.

    A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector

    Full text link
    We describe a search method for fast moving (β>5×103\beta > 5 \times 10^{-3}) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5×1015cm2s1sr11.5 \times 10^{-15} cm^{-2} s^{-1} sr^{-1} in the velocity range 5×103β0.995 \times 10^{-3} \le \beta \le 0.99 and for nucleon decay catalysis cross section smaller than 1mb\sim 1 mb.Comment: 29 pages (12 figures). Accepted by Astroparticle Physic

    New MACRO results on atmospheric neutrino oscillations

    Full text link
    The final results of the MACRO experiment on atmospheric neutrino oscillations are presented and discussed. The data concern different event topologies with average neutrino energies of ~3 and ~50 GeV. Multiple Coulomb Scattering of the high energy muons in absorbers was used to estimate the neutrino energy of each event. The angular distributions, the L/E_nu distribution, the particle ratios and the absolute fluxes all favour nu_mu --> nu_tau oscillations with maximal mixing and Delta m^2 =0.0023 eV^2. A discussion is made on the Monte Carlos used for the atmospheric neutrino flux. Some results on neutrino astrophysics are also briefly discussed.Comment: Invited Paper at the NANP03 Int. Conf., Dubna, 200

    Atmospheric neutrino induced muons in the MACRO detector

    Get PDF
    A measurement of the flux of neutrino-induced muons using the MACRO detector is presented. Different event topologies, corresponding to different neutrino parent energies can be detected. The upward throughgoing muon sample is the larger event sample. The observed upward-throughgoing muons are 26% fewer than expected and the zenith angle distribution does not fit with the expected one. Assuming neutrino oscillations, both measurements suggest maximum mixing and Dm2 of a few times 10-3 eV2. The other samples are due to the internally produced events and to upward-going stopping muons. These data show a regular deficit of observed events in each angular bin, as expected assuming neutrino oscillations with maximum mixing, in agreement with the analysis of the upward-throughgoing muon sample.Comment: 7 pages 6 figures to appear in the proceedings of XVIII International Conference on Neutrino Physics and Astrophysics (Neutrino'98), Takayama, Japan 4-9 June, 199

    The Observation of Up-going Charged Particles Produced by High Energy Muons in Underground Detectors

    Get PDF
    An experimental study of the production of up-going charged particles in inelastic interactions of down-going underground muons is reported, using data obtained from the MACRO detector at the Gran Sasso Laboratory. In a sample of 12.2 10^6 single muons, corresponding to a detector livetime of 1.55 y, 243 events are observed having an up-going particle associated with a down-going muon. These events are analysed to determine the range and emission angle distributions of the up-going particle, corrected for detection and reconstruction efficiency. Measurements of the muon neutrino flux by underground detectors are often based on the observation of through-going and stopping muons produced in νμ\nu_\mu interactions in the rock below the detector. Up-going particles produced by an undetected down-going muon are a potential background source in these measurements. The implications of this background for neutrino studies using MACRO are discussed.Comment: 18 pages, 9 figures. Accepted by Astrop. Physic

    Measurement of the atmospheric neutrino-induced upgoing muon flux using MACRO

    Get PDF
    We present a measurement of the flux of neutrino-induced upgoing muons (~100 GeV) using the MACRO detector. The ratio of the number of observed to expected events integrated over all zenith angles is 0.74 +/- 0.036 (stat) +/- 0.046(systematic) +/- 0.13 (theoretical). The observed zenith distribution for -1.0 < cos(theta) < -0.1 does not fit well with the no oscillation expectation, giving a maximum probability for chi^2 of 0.1%. The acceptance of the detector has been extensively studied using downgoing muons, independent analyses and Monte-Carlo simulations. The other systematic uncertainties cannot be the source of the discrepancies between the data and expectations. We have investigated whether the observed number of events and the shape of the zenith distribution can be explained by a neutrino oscillation hypothesis. Fitting either the flux or zenith distribution independently yields mixing parameters of sin^2 (2theta)=1.0 and delta m^2 of a few times 10^-3 eV^2. However, the observed zenith distribution does not fit well with any expectations giving a maximum probability for chi^2 of 5% for the best oscillation hypothesis, and the combined probability for the shape and number of events is 17%. We conclude that these data favor a neutrino oscillation hypothesis, but with unexplained structure in the zenith distribution not easily explained by either the statistics or systematics of the experiment.Comment: 7 pages (two-column) with 4 figure
    corecore