137 research outputs found
Stability of Monomer-Dimer Piles
We measure how strong, localized contact adhesion between grains affects the
maximum static critical angle, theta_c, of a dry sand pile. By mixing dimer
grains, each consisting of two spheres that have been rigidly bonded together,
with simple spherical monomer grains, we create sandpiles that contain strong
localized adhesion between a given particle and at most one of its neighbors.
We find that tan(theta_c) increases from 0.45 to 1.1 and the grain packing
fraction, Phi, decreases from 0.58 to 0.52 as we increase the relative number
fraction of dimer particles in the pile, nu_d, from 0 to 1. We attribute the
increase in tan(theta_c(nu_d)) to the enhanced stability of dimers on the
surface, which reduces the density of monomers that need to be accomodated in
the most stable surface traps. A full characterization and geometrical
stability analysis of surface traps provides a good quantitative agreement
between experiment and theory over a wide range of nu_d, without any fitting
parameters.Comment: 11 pages, 12 figures consisting of 21 eps files, submitted to PR
Velocity Correlations in Dense Gravity Driven Granular Chute Flow
We report numerical results for velocity correlations in dense,
gravity-driven granular flow down an inclined plane. For the grains on the
surface layer, our results are consistent with experimental measurements
reported by Pouliquen. We show that the correlation structure within planes
parallel to the surface persists in the bulk. The two-point velocity
correlation function exhibits exponential decay for small to intermediate
values of the separation between spheres. The correlation lengths identified by
exponential fits to the data show nontrivial dependence on the averaging time
\dt used to determine grain velocities. We discuss the correlation length
dependence on averaging time, incline angle, pile height, depth of the layer,
system size and grain stiffness, and relate the results to other length scales
associated with the rheology of the system. We find that correlation lengths
are typically quite small, of the order of a particle diameter, and increase
approximately logarithmically with a minimum pile height for which flow is
possible, \hstop, contrary to the theoretical expectation of a proportional
relationship between the two length scales.Comment: 21 pages, 16 figure
Novel universality classes of coupled driven diffusive systems
Motivated by the phenomenologies of dynamic roughening of strings in random
media and magnetohydrodynamics, we examine the universal properties of driven
diffusive system with coupled fields. We demonstrate that cross-correlations
between the fields lead to amplitude-ratios and scaling exponents varying
continuosly with the strength of these cross-correlations. The implications of
these results for experimentally relevant systems are discussed.Comment: To appear in Phys. Rev. E (Rapid Comm.) (2003
Anisotropic Scaling in Threshold Critical Dynamics of Driven Directed Lines
The dynamical critical behavior of a single directed line driven in a random
medium near the depinning threshold is studied both analytically (by
renormalization group) and numerically, in the context of a Flux Line in a
Type-II superconductor with a bulk current . In the absence of
transverse fluctuations, the system reduces to recently studied models of
interface depinning. In most cases, the presence of transverse fluctuations are
found not to influence the critical exponents that describe longitudinal
correlations. For a manifold with internal dimensions,
longitudinal fluctuations in an isotropic medium are described by a roughness
exponent to all orders in , and a
dynamical exponent . Transverse
fluctuations have a distinct and smaller roughness exponent
for an isotropic medium. Furthermore, their
relaxation is much slower, characterized by a dynamical exponent
, where is the
correlation length exponent. The predicted exponents agree well with numerical
results for a flux line in three dimensions. As in the case of interface
depinning models, anisotropy leads to additional universality classes. A
nonzero Hall angle, which has no analogue in the interface models, also affects
the critical behavior.Comment: 26 pages, 8 Postscript figures packed together with RevTeX 3.0
manuscript using uufiles, uses multicol.sty and epsf.sty, e-mail
[email protected] in case of problem
Finite Temperature Depinning of a Flux Line from a Nonuniform Columnar Defect
A flux line in a Type-II superconductor with a single nonuniform columnar
defect is studied by a perturbative diagrammatic expansion around an annealed
approximation. The system undergoes a finite temperature depinning transition
for the (rather unphysical) on-the-average repulsive columnar defect, provided
that the fluctuations along the axis are sufficiently large to cause some
portions of the column to become attractive. The perturbative expansion is
convergent throughout the weak pinning regime and becomes exact as the
depinning transition is approached, providing an exact determination of the
depinning temperature and the divergence of the localization length.Comment: RevTeX, 4 pages, 3 EPS figures embedded with epsf.st
Strong Phase Separation in a Model of Sedimenting Lattices
We study the steady state resulting from instabilities in crystals driven
through a dissipative medium, for instance, a colloidal crystal which is
steadily sedimenting through a viscous fluid. The problem involves two coupled
fields, the density and the tilt; the latter describes the orientation of the
mass tensor with respect to the driving field. We map the problem to a 1-d
lattice model with two coupled species of spins evolving through conserved
dynamics. In the steady state of this model each of the two species shows
macroscopic phase separation. This phase separation is robust and survives at
all temperatures or noise levels--- hence the term Strong Phase Separation.
This sort of phase separation can be understood in terms of barriers to
remixing which grow with system size and result in a logarithmically slow
approach to the steady state. In a particular symmetric limit, it is shown that
the condition of detailed balance holds with a Hamiltonian which has
infinite-ranged interactions, even though the initial model has only local
dynamics. The long-ranged character of the interactions is responsible for
phase separation, and for the fact that it persists at all temperatures.
Possible experimental tests of the phenomenon are discussed.Comment: To appear in Phys Rev E (1 January 2000), 16 pages, RevTex, uses
epsf, three ps figure
Lateral Separation of Macromolecules and Polyelectrolytes in Microlithographic Arrays
A new approach to separation of a variety of microscopic and mesoscopic
objects in dilute solution is presented. The approach takes advantage of unique
properties of a specially designed separation device (sieve), which can be
readily built using already developed microlithographic techniques. Due to the
broken reflection symmetry in its design, the direction of motion of an object
in the sieve varies as a function of its self-diffusion constant, causing
separation transverse to its direction of motion. This gives the device some
significant and unique advantages over existing fractionation methods based on
centrifugation and electrophoresis.Comment: 4 pages with 3 eps figures, needs RevTeX 3.0 and epsf, also available
in postscript form http://cmtw.harvard.edu/~deniz
The Origin of a Repose Angle: Kinetics of Rearrangements for Granular Materials
A microstructural theory of dense granular materials is presented, based on
two main ideas. Firstly, that macroscopic shear results form activated local
rearrangements at a mesoscopic scale. Secondly, that the update frequency of
microscopic processes is determined by granular temperature. In a shear cell,
the resulting constitutive equations account for Bagnold's scaling and for the
existence of a Coulomb criterion of yield. In the case of a granular flow down
an inclined plane, they account for the rheology observed in recent experiments
and for the temperature and velocity profiles measured numerically.Comment: submitted to PR
A Ball in a Groove
We study the static equilibrium of an elastic sphere held in a rigid groove
by gravity and frictional contacts, as determined by contact mechanics. As a
function of the opening angle of the groove and the tilt of the groove with
respect to the vertical, we identify two regimes of static equilibrium for the
ball. In the first of these, at large opening angle or low tilt, the ball rolls
at both contacts as it is loaded. This is an analog of the "elastic" regime in
the mechanics of granular media. At smaller opening angles or larger tilts, the
ball rolls at one contact and slides at the other as it is loaded, analogously
with the "plastic" regime in the mechanics of granular media. In the elastic
regime, the stress indeterminacy is resolved by the underlying kinetics of the
ball response to loading.Comment: RevTeX 3.0, 4 pages, 2 eps figures included with eps
Dynamics and Instabilities of Planar Tensile Cracks in Heterogeneous Media
The dynamics of tensile crack fronts restricted to advance in a plane are
studied. In an ideal linear elastic medium, a propagating mode along the crack
front with a velocity slightly less than the Rayleigh wave velocity, is found
to exist. But the dependence of the effective fracture toughness on
the crack velocity is shown to destabilize the crack front if
. Short wavelength radiation due to weak random
heterogeneities leads to this instability at low velocities. The implications
of these results for the crack dynamics are discussed.Comment: 12 page
- …
