2,358 research outputs found
The Apollo spacecraft: A chronology volume 4, 21 January 1966 - 13 July 1974
This final volume of the chronology is divided into three parts: (1) preparation for flight, the accident, and investigation; (2) recovery, spacecraft redefinition, and the first manned flight; and (3) man circles the moon, the Eagle lands, and manned space exploration. Congressional documents, official correspondence, government and contractor reports, memoranda, working papers, and minutes of meetings were used as primary sources. A relatively few entries are based on press releases and newspaper and magazine articles
Multi-wavelength modeling of the spatially resolved debris disk of HD 107146
(abridged) We aim to constrain the location, composition, and dynamical state
of planetesimal populations and dust around the young, sun-like (G2V) star HD
107146}. We consider coronagraphic observations obtained with the Advanced
Camera for Surveys (HST/ACS) onboard the HST in broad V and broad I filters, a
resolved 1.3mm map obtained with the Combined Array for Research in
Millimeter-Wave Astronomy (CARMA), Spitzer/IRS low resolution spectra, and the
spectral energy distribution (SED) of the object at wavelengths ranging from
3.5micron to 3.1mm. We complement these data with new coronagraphic high
resolution observations of the debris disk using the Near Infrared Camera and
Multi-Object Spectrometer (HST/NICMOS) aboard the HST in the F110W filter. The
SED and images of the disk in scattered light as well as in thermal reemission
are combined in our modeling using a parameterized model for the disk density
distribution and optical properties of the dust. A detailed analytical model of
the debris disk around HD 107146 is presented that allows us to reproduce the
almost entire set of spatially resolved and unresolved multi-wavelength
observations. Considering the variety of complementary observational data, we
are able to break the degeneracies produced by modeling SED data alone. We find
the disk to be an extended ring with a peak surface density at 131AU.
Furthermore, we find evidence for an additional, inner disk probably composed
of small grains released at the inner edge of the outer disk and moving inwards
due to Poynting-Robertson drag. A birth ring scenario (i.e., a more or less
broad ring of planetesimals creating the dust disk trough collisions) is found
to be the most likely explanation of the ringlike shape of the disk.Comment: 15 pages, 9 figures, accepted for publication in A&
J004457+4123 (Sharov 21): not a remarkable nova in M31 but a background quasar with a spectacular UV flare
We announce the discovery of a quasar behind the disk of M31, which was
previously classified as a remarkable nova in our neighbour galaxy. The paper
is primarily aimed at the outburst of J004457+4123 (Sharov 21), with the first
part focussed on the optical spectroscopy and the improvement in the
photometric database. Both the optical spectrum and the broad band spectral
energy distribution of Sharov 21 are shown to be very similar to that of
normal, radio-quiet type 1 quasars. We present photometric data covering more
than a century and resulting in a long-term light curve that is densely sampled
over the past five decades. The variability of the quasar is characterized by a
ground state with typical fluctuation amplitudes of ~0.2 mag around B~20.5,
superimposed by a singular flare of ~2 yr duration (observer frame) with the
maximum at 1992.81 where the UV flux has increased by a factor of ~20. The
total energy in the flare is at least three orders of magnitudes higher than
the radiated energy of the most luminous supernovae, provided that it comes
from an intrinsic process and the energy is radiated isotropically. The profile
of the flare light curve appears to be in agreement with the standard
predictions for a stellar tidal disruption event where a ~10 M_sun giant star
was shredded in the tidal field of a ~2...5 10^8 M_sun black hole. The short
fallback time derived from the light curve requires an ultra-close encounter
where the pericentre of the stellar orbit is deep within the tidal disruption
radius. Gravitational microlensing provides an alternative explanation, though
the probability of such a high amplification event is very low.Comment: Accepted for publication in Astronomy and Astrophysics, 14 pages, 11
figure
The gradient of potential vorticity, quaternions and an orthonormal frame for fluid particles
The gradient of potential vorticity (PV) is an important quantity because of
the way PV (denoted as ) tends to accumulate locally in the oceans and
atmospheres. Recent analysis by the authors has shown that the vector quantity
\bdB = \bnabla q\times \bnabla\theta for the three-dimensional incompressible
rotating Euler equations evolves according to the same stretching equation as
for \bom the vorticity and \bB, the magnetic field in magnetohydrodynamics
(MHD). The \bdB-vector therefore acts like the vorticity \bom in Euler's
equations and the \bB-field in MHD. For example, it allows various analogies,
such as stretching dynamics, helicity, superhelicity and cross helicity. In
addition, using quaternionic analysis, the dynamics of the \bdB-vector
naturally allow the construction of an orthonormal frame attached to fluid
particles\,; this is designated as a quaternion frame. The alignment dynamics
of this frame are particularly relevant to the three-axis rotations that
particles undergo as they traverse regions of a flow when the PV gradient
\bnabla q is large.Comment: Dedicated to Raymond Hide on the occasion of his 80th birthda
Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer
The Large Binocular Telescope Interferometer uses a near-infrared camera to
measure the optical path length variations between the two AO-corrected
apertures and provide high-angular resolution observations for all its science
channels (1.5-13 m). There is however a wavelength dependent component to
the atmospheric turbulence, which can introduce optical path length errors when
observing at a wavelength different from that of the fringe sensing camera.
Water vapor in particular is highly dispersive and its effect must be taken
into account for high-precision infrared interferometric observations as
described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this
paper, we describe the new sensing approach that has been developed at the LBT
to measure and monitor the optical path length fluctuations due to dry air and
water vapor separately. After reviewing the current performance of the system
for dry air seeing compensation, we present simultaneous H-, K-, and N-band
observations that illustrate the feasibility of our feedforward approach to
stabilize the path length fluctuations seen by the LBTI nuller.Comment: SPIE conference proceeding
Incidence of debris discs around FGK stars in the solar neighbourhood
Debris discs are a consequence of the planet formation process and constitute
the fingerprints of planetesimal systems. Their solar system's counterparts are
the asteroid and Edgeworth-Kuiper belts. The aim of this paper is to provide
robust numbers for the incidence of debris discs around FGK stars in the solar
neighbourhood. The full sample of 177 FGK stars with d<20 pc proposed for the
DUNES survey is presented. Herschel/PACS observations at 100 and 160 micron
complemented with data at 70 micron, and at 250, 350 and 500 micron SPIRE
photometry, were obtained. The 123 objects observed by the DUNES collaboration
were presented in a previous paper. The remaining 54 stars, shared with the
DEBRIS consortium and observed by them, and the combined full sample are
studied in this paper. The incidence of debris discs per spectral type is
analysed and put into context together with other parameters of the sample,
like metallicity, rotation and activity, and age.
The subsample of 105 stars with d<15 pc containing 23 F, 33 G and 49 K stars,
is complete for F stars, almost complete for G stars and contains a substantial
number of K stars to draw solid conclusions on objects of this spectral type.
The incidence rates of debris discs per spectral type 0.26 (6 objects with
excesses out of 23 F stars), 0.21 (7 out of 33 G stars) and 0.20 (10 out of 49
K stars), the fraction for all three spectral types together being 0.22 (23 out
of 105 stars). Uncertainties corresponding to a 95% confidence level are given
in the text for all these numbers. The medians of the upper limits of
L_dust/L_* for each spectral type are 7.8E-7 (F), 1.4E-6 (G) and 2.2E-6 (K);
the lowest values being around 4.0E-7. The incidence of debris discs is similar
for active (young) and inactive (old) stars. The fractional luminosity tends to
drop with increasing age, as expected from collisional erosion of the debris
belts.Comment: 31 pages, 15 figures, 10 tables, 2 appendice
Cyclin D1 integrates G9a-mediated histone methylation.
Lysine methylation of histones and non-histone substrates by the SET domain containing protein lysine methyltransferase (KMT) G9a/EHMT2 governs transcription contributing to apoptosis, aberrant cell growth, and pluripotency. The positioning of chromosomes within the nuclear three-dimensional space involves interactions between nuclear lamina (NL) and the lamina-associated domains (LAD). Contact of individual LADs with the NL are dependent upon H3K9me2 introduced by G9a. The mechanisms governing the recruitment of G9a to distinct subcellular sites, into chromatin or to LAD, is not known. The cyclin D1 gene product encodes the regulatory subunit of the holoenzyme that phosphorylates pRB and NRF1 thereby governing cell-cycle progression and mitochondrial metabolism. Herein, we show that cyclin D1 enhanced H3K9 dimethylation though direct association with G9a. Endogenous cyclin D1 was required for the recruitment of G9a to target genes in chromatin, for G9a-induced H3K9me2 of histones, and for NL-LAD interaction. The finding that cyclin D1 is required for recruitment of G9a to target genes in chromatin and for H3K9 dimethylation, identifies a novel mechanism coordinating protein methylation
Lagrangian analysis of alignment dynamics for isentropic compressible magnetohydrodynamics
After a review of the isentropic compressible magnetohydrodynamics (ICMHD)
equations, a quaternionic framework for studying the alignment dynamics of a
general fluid flow is explained and applied to the ICMHD equations.Comment: 12 pages, 2 figures, submitted to a Focus Issue of New Journal of
Physics on "Magnetohydrodynamics and the Dynamo Problem" J-F Pinton, A
Pouquet, E Dormy and S Cowley, editor
Selective decay by Casimir dissipation in fluids
The problem of parameterizing the interactions of larger scales and smaller
scales in fluid flows is addressed by considering a property of two-dimensional
incompressible turbulence. The property we consider is selective decay, in
which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in 3D
flows) decays in time, while the energy stays essentially constant. This paper
introduces a mechanism that produces selective decay by enforcing Casimir
dissipation in fluid dynamics. This mechanism turns out to be related in
certain cases to the numerical method of anticipated vorticity discussed in
\cite{SaBa1981,SaBa1985}. Several examples are given and a general theory of
selective decay is developed that uses the Lie-Poisson structure of the ideal
theory. A scale-selection operator allows the resulting modifications of the
fluid motion equations to be interpreted in several examples as parameterizing
the nonlinear, dynamical interactions between disparate scales. The type of
modified fluid equation systems derived here may be useful in modelling
turbulent geophysical flows where it is computationally prohibitive to rely on
the slower, indirect effects of a realistic viscosity, such as in large-scale,
coherent, oceanic flows interacting with much smaller eddies
- …
