51 research outputs found

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    The Characterization of Helicobacter pylori DNA Associated with Ancient Human Remains Recovered from a Canadian Glacier

    Get PDF
    Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of nearly half of the world's population. Genotypic characterization of H. pylori strains involves the analysis of virulence-associated genes, such as vacA, which has multiple alleles. Previous phylogenetic analyses have revealed a connection between modern H. pylori strains and the movement of ancient human populations. In this study, H. pylori DNA was amplified from the stomach tissue of the Kwäday Dän Ts'ìnchi individual. This ancient individual was recovered from the Samuel Glacier in Tatshenshini-Alsek Park, British Columbia, Canada on the traditional territory of the Champagne and Aishihik First Nations and radiocarbon dated to a timeframe of approximately AD 1670 to 1850. This is the first ancient H. pylori strain to be characterized with vacA sequence data. The Tatshenshini H. pylori strain has a potential hybrid vacA m2a/m1d middle (m) region allele and a vacA s2 signal (s) region allele. A vacA s2 allele is more commonly identified with Western strains, and this suggests that European strains were present in northwestern Canada during the ancient individual's time. Phylogenetic analysis indicated that the vacA m1d region of the ancient strain clusters with previously published novel Native American strains that are closely related to Asian strains. This indicates a past connection between the Kwäday Dän Ts'ìnchi individual and the ancestors who arrived in the New World thousands of years ago

    The additional value of patient-reported health status in predicting 1-year mortality after invasive coronary procedures: A report from the Euro Heart Survey on Coronary Revascularisation

    Get PDF
    Objective: Self-perceived health status may be helpful in identifying patients at high risk for adverse outcomes. The Euro Heart Survey on Coronary Revascularization (EHS-CR) provided an opportunity to explore whether impaired health status was a predictor of 1-year mortality in patients with coronary artery disease (CAD) undergoing angiographic procedures. Methods: Data from the EHS-CR that included 5619 patients from 31 member countries of the European Society of Cardiology were used. Inclusion criteria for the current study were completion of a self-report measure of health status, the EuroQol Questionnaire (EQ-5D) at discharge and information on 1-year follow-up, resulting in a study population of 3786 patients. Results: The 1-year mortality was 3.2% (n = 120). Survivors reported fewer problems on the five dimensions of the EQ-5D as compared with non-survivors. A broad range of potential confounders were adjusted for, which reached a p<0.10 in the unadjusted analyses. In the adjusted analyses, problems with self-care (OR 3.45; 95% CI 2.14 to 5.59) and a low rating (≤ 60) on health status (OR 2.41; 95% CI 1.47 to 3.94) were the most powerful independent predictors of mortality, among the 22 clinical variables included in the analysis. Furthermore, patients who reported no problems on all five dimensions had significantly lower 1-year mortality rates (OR 0.47; 95% CI 0.28 to 0.81). Conclusions: This analysis shows that impaired health status is associated with a 2-3-fold increased risk of all-cause mortality in patients with CAD, independent of other conventional risk factors. These results highlight the importance of including patients' subjective experience of their own health status in the evaluation strategy to optimise risk stratification and management in clinical practice

    Nonlinear bio-imaging with a high peak power all- quantum-dot master-oscillator power-amplified system

    No full text
    The requirement of less-expensive laser system for nonlinear bio-imaging applications can be addressed employing chip-sized devices. Preliminary studies using an amplified quantum-dot laser system show its potential to be used for such applications

    Self-lubricating, wear resistant protic ionic liquid-epoxy resin

    No full text
    A new self-lubricating, wear resistant epoxy resin material (ER+DCi) has been obtained by addition of a 9 wt.% of the room-temperature protic ionic liquid (PIL) tri-[bis(2-hydroxyethyl)ammonium)] citrate (DCi) to the mixture of the prepolymer and the hardener composed of a mixture of amines. The highly polar tricationic protic ammonium carboxylate ionic liquid shows a high contact angle on the resin surface and distributes inside the epoxy matrix as spheres of around 50 µm in diameter, with a mean density of approximately 38 mm2. The presence of the ionic liquid fluid phase inside the cavities has been determined by SEM observation of fracture surfaces and FTIR microscopy. The DCi phase reduces the residual curing enthalpy and the glass transition temperature, as determined by DSC, without significantly changing microhardness or electrical resistivity values. DMA analysis shows that DCi reduces storage modulus, loss modulus and tan δ values. The tribological performance of the new material has been compared with that of the neat epoxy resin under pin-on-disc sliding conditions. ER+DCi shows more than 50% reduction of the friction coefficient with respect to neat epoxy resin, and no surface damage, in contrast with the severe wear that takes place in the case of neat epoxy resin. A self-lubrication mechanism by release of the ionic liquid lubricant under load is proposed

    High peak-power picosecond pulse generation at 1.26 μm using a quantum-dot-based externalcavity mode-locked laser and tapered optical amplifier

    No full text
    In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetitionrate- tunable quantum-dot external-cavity passively mode-locked laser (QDECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peakpower pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range. © 2012 Optical Society of America
    corecore