5,821 research outputs found
Recommended from our members
Gravitational Instabilities In A Protoplanetary Disk Including The Effects Of Magnetic-Fields
We investigate the gravitational instability of a thin, Keplerian protoplanetary disk including the effects of a largely azimuthal magnetic field. The model follows that of our previous work (Noh, Vishniac, & Cochran 1991) except for the inclusion of a magnetic field. The disk is assumed to consist of neutral and ionized gas and neutral dust which are coupled by gravity and friction. The growth rates and eigenfunctions are calculated numerically using nonaxisymmetric linear perturbation methods. The results show that the growth rate has a maximum at some intermediate azimuthal number m, but for each value of m it is reduced relative to the unmagnetized case. The effects of the magnetic field appear more strongly on small scales. As the strength of the equilibrium magnetic field increases the growth rates decrease, and the maximum instability occurs at a lower value of m due to the increasing magnetic pressure. The response of each component to the magnetic field is discussed using the behavior of the eigenfunctions in the radial direction. With the inclusion of the magnetic field, the effects of the ionization fraction and friction on the growth rates also appear to be important for high m modes. Increasing the ionization fraction or the friction suppresses instability, but only slightly changes the maximally unstable azimuthal scales. The enhanced growth rates due to a dust component for which thermal pressure is negligible are somewhat reduced by the inclusion of a magnetic field. The effects of different boundary conditions (reflecting and transmitting) on the growth rates are also shown.NASA NAGW 2418Astronom
Dirty Recycling: Auto Salvage and Its Potential Impacts on Marginalized Populations
The salvage yard represents the final waypoint in the cradle-to-grave cycle of the automobile. Residual amounts of petroleum hydrocarbons, heavy metals, and acids used in automobiles can be extremely harmful to human health and the environment if not managed correctly. The purpose of this study was to assess the extent to which minority populations were exposed to the hazards of the auto salvage industry. Census data for population, income, race/ethnicity, sex, and age were organized using ArcGIS software. Population demographics were analyzed in the areas surrounding 98 auto salvage yards found in Philadelphia and Adams Counties, Pennsylvania. In Philadelphia County, the results showed that low-income minorities, females, and 65+ individuals are over represented groups near auto salvage yards. Conversely, Adams County showed few spatial relationships in demographic distribution. Our findings suggest that in urban counties, such as Philadelphia, depressed property values have resulted in a large percentage of below average income minorities inhabiting areas in close proximity to auto salvage yards. On the other hand, auto salvage yards in rural areas, such as Adams County, do not appear to have the same effect because population density and racial diversity are much lower
Grain boundary partitioning of Ar and He
An experimental procedure has been developed that permits measurement of the partitioning of Ar and He between crystal interiors and the intergranular medium (ITM) that surrounds them in synthetic melt-free polycrystalline diopside aggregates. ^(37)Ar and ^(4)He are introduced into the samples via neutron irradiation. As samples are crystallized under sub-solidus conditions from a pure diopside glass in a piston cylinder apparatus, noble gases diffusively equilibrate between the evolving crystal and intergranular reservoirs. After equilibration, ITM Ar and He is distinguished from that incorporated within the crystals by means of step heating analysis. An apparent equilibrium state (i.e., constant partitioning) is reached after about 20 h in the 1450 °C experiments. Data for longer durations show a systematic trend of decreasing ITM Ar (and He) with decreasing grain boundary (GB) interfacial area as would be predicted for partitioning
controlled by the network of planar grain boundaries (as opposed to ITM gases distributed in discrete micro-bubbles or melt).
These data yield values of GB-area-normalized partitioning, K¯^(Ar)_(ITM), with units of (Ar/m^3 of solid)/(Ar/m^2 of GB) of 6.8 x 10^3 – 2.4 x 104 m^(-1). Combined petrographic microscope, SEM, and limited TEM observation showed no evidence that a residual glass phase or grain boundary micro-bubbles dominated the ITM, though they may represent minor components. If a nominal GB thickness (δ) is assumed, and if the density of crystals and the grain boundaries are assumed equal, then a true grain boundary partition coefficient (K^(Ar)_(GB) = X^(Ar)_(crystals)/X^(Ar)_(GB) may be determined. For reasonable values of δ, K^(Ar)_(GB) is at least an order of magnitude lower than the Ar partition coefficient between diopside and melt. Helium partitioning data provide a less robust constraint with K¯^(He)_(ITM) between 4 x 10^3 and 4 x 10^4 cm^(-1), similar to the Ar partitioning data. These data suggest that an ITM consisting of nominally melt free, bubble free, tight grain boundaries can constitute a significant but not infinite reservoir, and therefore bulk transport pathway, for noble gases in fine grained portions of the crust and mantle where aqueous or melt fluids are non-wetting and of very low abundance (i.e., <0.1% fluid). Heterogeneities in grain size within dry equilibrated systems will correspond to significant differences in bulk rock noble gas content
- …
