32,057 research outputs found

    HI 21cm observations of the PG1216+069 sub-DLy-alpha absorber field at z=0.00632

    Full text link
    The Westerbork Synthesis Radio Telescope finds a weak 21cm line emission feature at the coordinates (RA-Dec-velocity) of the sub-Damped Lyman-alpha absorber observed at z_abs=0.00632 in the spectrum of PG1216+069. The emission feature, WSRT-J121921+0639, lies within 30" of the quasar sightline, is detected at 99.8% (3 sigma) confidence level, has M_HI between 5 and 15x10^6 M_solar, and has velocity spread between 20 and 60 km/s. Other HI emitters in the field include VCC297 at a projected distance of 86/h_75 kpc and a previously unreported HI cloud, WSRT-J121919+0624 at 112/h_75 kpc with M_HI ~ 3x10^8 M_solar. The optically identified, foreground galaxy that is closest to the quasar sightline appears to be VCC339 (~L*/25) at 29/h_75 kpc and velocity offset 292 km/s . A low surface brightness galaxy with the HI mass of the sub-DLA absorber WSRT-J121921+0639 would likely have m_B ~ 17, and its diffuse optical emission would need to compete with the light of both the background QSO and a brighter foreground star ~10" from the QSO sight line.Comment: 10 pages, 2 figures, accepted for publication in ApJLet

    Embedded density functional theory for covalently bonded and strongly interacting subsystems

    Get PDF
    Embedded density functional theory (e-DFT) is used to describe the electronic structure of strongly interacting molecular subsystems. We present a general implementation of the Exact Embedding (EE) method [J. Chem. Phys. 133, 084103 (2010)] to calculate the large contributions of the nonadditive kinetic potential (NAKP) in such applications. Potential energy curves are computed for the dissociation of Li^+–Be, CH_3–CF_3, and hydrogen-bonded water clusters, and e-DFT results obtained using the EE method are compared with those obtained using approximate kinetic energy functionals. In all cases, the EE method preserves excellent agreement with reference Kohn–Sham calculations, whereas the approximate functionals lead to qualitative failures in the calculated energies and equilibrium structures. We also demonstrate an accurate pairwise approximation to the NAKP that allows for efficient parallelization of the EE method in large systems; benchmark calculations on molecular crystals reveal ideal, size-independent scaling of wall-clock time with increasing system size

    Web 2.0 and micro-businesses: An exploratory investigation

    Get PDF
    This is the author's final version of the article. This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited.This article was chosen as a Highly Commended Award Winner at the Emerald Literati Network Awards for Excellence 2013.Purpose – The paper aims to report on an exploratory study into how small businesses use Web 2.0 information and communication technologies (ICT) to work collaboratively with other small businesses. The study had two aims: to investigate the benefits available from the use of Web 2.0 in small business collaborations, and to characterize the different types of such online collaborations. Design/methodology/approach – The research uses a qualitative case study methodology based on semi-structured interviews with the owner-managers of 12 UK-based small companies in the business services sector who are early adopters of Web 2.0 technologies. Findings – Benefits from the use of Web 2.0 are categorized as lifestyle benefits, internal operational efficiency, enhanced capability, external communications and enhanced service offerings. A 2×2 framework is developed to categorize small business collaborations using the dimensions of the basis for inter-organizational collaboration (control vs cooperation) and the level of Web 2.0 ICT use (simple vs sophisticated). Research limitations/implications – A small number of firms of similar size, sector and location were studied, which limits generalizability. Nonetheless, the results offer a pointer to the likely future use of Web 2.0 tools by other small businesses. Practical implications – The research provides evidence of the attraction and potential of Web 2.0 for collaborations between small businesses. Originality/value – The paper is one of the first to report on use of Web 2.0 ICT in collaborative working between small businesses. It will be of interest to those seeking a better understanding of the potential of Web 2.0 in the small business community.WestFocu

    Safety hazards associated with the charging of lithium/sulfur dioxide cells

    Get PDF
    A continuing research program to assess the responses of spirally wound, lithium/sulfur dioxide cells to charging as functions of charging current, temperature, and cell condition prior to charging is described. Partially discharged cells that are charged at currents greater than one ampere explode with the time to explosion inversely proportional to the charging current. Cells charged at currents of less than one ampere may fail in one of several modes. The data allows an empirical prediction of when certain cells will fail given a constant charging current

    Density functional theory embedding for correlated wavefunctions: Improved methods for open-shell systems and transition metal complexes

    Full text link
    Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and we develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential (OEP) calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexaaquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination.Comment: 11 pages, 5 figures, 2 table

    Asymptotics and functional form of correlators in the XX - spin chain of finite length

    Full text link
    We verify the functional form of the asymptotics of the spin - spin equal - time correlation function for the XX-chain, predicted by the hypothesis of conformal invariance at large distances and by the bosonization procedure. We point out that bosonization also predicts the functional form of the correlators for the chains of finite length. We found the exact expression for the spin- spin equal- time correlator on finite lattice. We find the excellent agreement of the exact correlator with the prediction given by the leading asymptotics result up to the very small distances. We also establish the correspondence between the value of the constant before the asymptotics for the XX- chain with the expression for this constant proposed by Lukyanov and Zamolodchikov. We also evaluate the constant corresponding to the subleading term in the asymptotics in a way which is different from the previous studies.Comment: LaTex, 12 page

    Evidence for multiple impurity bands in sodium-doped silicon MOSFETs

    Full text link
    We report measurements of the temperature-dependent conductivity in a silicon metal-oxide-semiconductor field-effect transistor that contains sodium impurities in the oxide layer. We explain the variation of conductivity in terms of Coulomb interactions that are partially screened by the proximity of the metal gate. The study of the conductivity exponential prefactor and the localization length as a function of gate voltage have allowed us to determine the electronic density of states and has provided arguments for the presence of two distinct bands and a soft gap at low temperature.Comment: 4 pages; 5 figures; Published in PRB Rapid-Communication

    Formfactors and functional form of correlators in the XX spin chain

    Full text link
    We present the new expressions for the formfactors of local operators for the XX - quantum spin chain as a Cauchy determinants. Using the known functional form of the correlator at large distances we propose the new expression for the constant for the asymptotics of the correlator as a Cauchy determinant. We calculate the momentum distribution for the general case of the XXZ spin chain and point out that it is completely different from the Luttinger model (the system of fermions). For the XX chain we compare numerically the value of the lowest formfactor and the expectation value of momentum- zero operators which is determined by the functional form of the correlator.Comment: LaTex, 18 page

    Magnetic Collimation in PNe

    Get PDF
    Recent studies have focused on the the role of initially weak toroidal magnetic fields embedded in a stellar wind as the agent for collimation in planetary nebulae. In these models the wind is assumed to be permeated by a helical magnetic field in which the poloidal component falls off faster than the toroidal component. The collimation only occurs after the wind is shocked at large distances from the stellar source. In this paper we re-examine assumptions built into this ``Magnetized Wind Blown Bubble'' (MWBB) model. We show that a self-consistent study of the model leads to a large parameter regime where the wind is self-collimated before the shock wave is encountered. We also explore the relation between winds in the MWBB model and those which are produced via magneto-centrifugal processes. We conclude that a more detailed examination of the role of self-collimation is needed in the context of PNe studies
    corecore