1,235 research outputs found
Thermoelastic Noise and Homogeneous Thermal Noise in Finite Sized Gravitational-Wave Test Masses
An analysis is given of thermoelastic noise (thermal noise due to
thermoelastic dissipation) in finite sized test masses of laser interferometer
gravitational-wave detectors. Finite-size effects increase the thermoelastic
noise by a modest amount; for example, for the sapphire test masses tentatively
planned for LIGO-II and plausible beam-spot radii, the increase is less than or
of order 10 per cent. As a side issue, errors are pointed out in the currently
used formulas for conventional, homogeneous thermal noise (noise associated
with dissipation which is homogeneous and described by an imaginary part of the
Young's modulus) in finite sized test masses. Correction of these errors
increases the homogeneous thermal noise by less than or of order 5 per cent for
LIGO-II-type configurations.Comment: 10 pages and 3 figures; RevTeX; submitted to Physical Review
Maximal work extraction from quantum systems
Thermodynamics teaches that if a system initially off-equilibrium is coupled
to work sources, the maximum work that it may yield is governed by its energy
and entropy. For finite systems this bound is usually not reachable. The
maximum extractable work compatible with quantum mechanics (``ergotropy'') is
derived and expressed in terms of the density matrix and the Hamiltonian. It is
related to the property of majorization: more major states can provide more
work. Scenarios of work extraction that contrast the thermodynamic intuition
are discussed, e.g. a state with larger entropy than another may produce more
work, while correlations may increase or reduce the ergotropy.Comment: 5 pages, 0 figures, revtex
Geometrothermodynamics
We present the fundamentals of geometrothermodynamics, an approach to study
the properties of thermodynamic systems in terms of differential geometric
concepts. It is based, on the one hand, upon the well-known contact structure
of the thermodynamic phase space and, on the other hand, on the metric
structure of the space of thermodynamic equilibrium states. In order to make
these two structures compatible we introduce a Legendre invariant set of
metrics in the phase space, and demand that their pullback generates metrics on
the space of equilibrium states. We show that Weinhold's metric, which was
introduced {\it ad hoc}, is not contained within this invariant set. We propose
alternative metrics which allow us to redefine the concept of thermodynamic
length in an invariant manner and to study phase transitions in terms of
curvature singularities.Comment: Revised version, to be published in Jour. Math. Phy
Accelerated expansion of a universe containing a self-interacting Bose-Einstein gas
Acceleration of the universe is obtained from a model of non-relativistic
particles with a short-range attractive interaction, at low enough temperature
to produce a Bose-Einstein condensate. Conditions are derived for
negative-pressure behavior. In particular, we show that a phantom-accelerated
regime at the beginning of the universe solves the horizon problem,
consistently with nucleosynthesis.Comment: 18 pages, 4 figure
Entropy, time irreversibility and Schroedinger equation in a primarily discrete space-time
In this paper we show that the existence of a primarily discrete space-time
may be a fruitful assumption from which we may develop a new approach of
statistical thermodynamics in pre-relativistic conditions. The discreetness of
space-time structure is determined by a condition that mimics the Heisenberg
uncertainty relations and the motion in this space-time model is chosen as
simple as possible. From these two assumptions we define a path-entropy that
measures the number of closed paths associated with a given energy of the
system preparation. This entropy has a dynamical character and depends on the
time interval on which we count the paths. We show that it exists an
like-equilibrium condition for which the path-entropy corresponds exactly to
the usual thermodynamic entropy and, more generally, the usual statistical
thermodynamics is reobtained. This result derived without using the Gibbs
ensemble method shows that the standard thermodynamics is consistent with a
motion that is time-irreversible at a microscopic level. From this change of
paradigm it becomes easy to derive a . A comparison with the
traditional Boltzmann approach is presented. We also show how our approach can
be implemented in order to describe reversible processes. By considering a
process defined simultaneously by initial and final conditions a well defined
stochastic process is introduced and we are able to derive a Schroedinger
equation, an example of time reversible equation.Comment: latex versio
First-order transitions and triple point on a random p-spin interaction model
The effects of competing quadrupolar- and spin-glass orderings are
investigated on a spin-1 Ising model with infinite-range random -spin
interactions. The model is studied through the replica approach and a phase
diagram is obtained in the limit . The phase diagram, obtained
within replica-symmetry breaking, exhibits a very unusual feature in magnetic
models: three first-order transition lines meeting at a commom triple point,
where all phases of the model coexist.Comment: 9 pages, 2 ps figures include
Efficiency in nanostructured thermionic and thermoelectric devices
Advances in solid-state device design now allow the spectrum of transmitted
electrons in thermionic and thermoelectric devices to be engineered in ways
that were not previously possible. Here we show that the shape of the electron
energy spectrum in these devices has a significant impact on their performance.
We distinguish between traditional thermionic devices where electron momentum
is filtered in the direction of transport only and a second type, in which the
electron filtering occurs according to total electron momentum. Such 'total
momentum filtered' kr thermionic devices could potentially be implemented in,
for example, quantum dot superlattices. It is shown that whilst total momentum
filtered thermionic devices may achieve efficiency equal to the Carnot value,
traditional thermionic devices are limited to efficiency below this. Our second
main result is that the electronic efficiency of a device is not only improved
by reducing the width of the transmission filter as has previously been shown,
but also strongly depends on whether the transmission probability rises sharply
from zero to full transmission. The benefit of increasing efficiency through a
sharply rising transmission probability is that it can be achieved without
sacrificing device power, in contrast to the use of a narrow transmission
filter which can greatly reduce power. We show that devices which have a
sharply-rising transmission probability significantly outperform those which do
not and it is shown such transmission probabilities may be achieved with
practical single and multibarrier devices. Finally, we comment on the
implications of the effect the shape of the electron energy spectrum on the
efficiency of thermoelectric devices.Comment: 11 pages, 15 figure
Nonlocal observables and lightcone-averaging in relativistic thermodynamics
The unification of relativity and thermodynamics has been a subject of
considerable debate over the last 100 years. The reasons for this are twofold:
(i) Thermodynamic variables are nonlocal quantities and, thus, single out a
preferred class of hyperplanes in spacetime. (ii) There exist different,
seemingly equally plausible ways of defining heat and work in relativistic
systems. These ambiguities led, for example, to various proposals for the
Lorentz transformation law of temperature. Traditional 'isochronous'
formulations of relativistic thermodynamics are neither theoretically
satisfactory nor experimentally feasible. Here, we demonstrate how these
deficiencies can be resolved by defining thermodynamic quantities with respect
to the backward-lightcone of an observation event. This approach yields novel,
testable predictions and allows for a straightforward-extension of
thermodynamics to General Relativity. Our theoretical considerations are
illustrated through three-dimensional relativistic many-body simulations.Comment: typos in Eqs. (12) and (14) corrected, minor additions in the tex
Collective Dipole Bremsstrahlung in Fusion Reactions
We estimate the dipole radiation emitted in fusion processes. We show that a
classical bremsstrahlung approach can account for both the preequilibrium and
the thermal photon emission. We give an absolute evaluation of the
pre-equilibrium component due to the charge asymmetry in the entrance channel
and we study the energy and mass dependence in order to optimize the
observation. This dynamical dipole radiation could be a relevant cooling
mechanism in the fusion path. We stress the interest in experiments with the
new available radioactive beams.Comment: 4 pages (LATEX), 4 Postscript figures, minor text modification
Mesoscopic modeling of a two-phase flow in the presence of boundaries: the Contact Angle
We present a mesoscopic model, based on the Boltzmann Equation, for the
interaction between a solid wall and a non-ideal fluid. We present an analytic
derivation of the contact angle in terms of the surface tension between the
liquid-gas, the liquid-solid and the gas-solid phases. We study the dependency
of the contact angle on the two free parameters of the model, which determine
the interaction between the fluid and the boundaries, i.e. the equivalent of
the wall density and of the wall-fluid potential in Molecular Dynamics studies.
We compare the analytical results obtained in the hydrodynamical limit for
the density profile and for the surface tension expression with the numerical
simulations. We compare also our two-phase approach with some exact results for
a pure hydrodynamical incompressible fluid based on Navier-Stokes equations
with boundary conditions made up of alternating slip and no-slip strips.
Finally, we show how to overcome some theoretical limitations connected with a
discretized Boltzmann scheme and we discuss the equivalence between the surface
tension defined in terms of the mechanical equilibrium and in terms of the
Maxwell construction.Comment: 29 pages, 12 figure
- …
