263,349 research outputs found

    Exploring Quantum Phase Transitions with a Novel Sublattice Entanglement Scenario

    Full text link
    We introduce a new measure called reduced entropy of sublattice to quantify entanglement in spin, electron and boson systems. By analyzing this quantity, we reveal an intriguing connection between quantum entanglement and quantum phase transitions in various strongly correlated systems: the local extremes of reduced entropy and its first derivative as functions of the coupling constant coincide respectively with the first and second order transition points. Exact numerical studies merely for small lattices reproduce several well-known results, demonstrating that our scenario is quite promising for exploring quantum phase transitions.Comment: 4 pages, 4 figure

    Symmetries and Lie algebra of the differential-difference Kadomstev-Petviashvili hierarchy

    Full text link
    By introducing suitable non-isospectral flows we construct two sets of symmetries for the isospectral differential-difference Kadomstev-Petviashvili hierarchy. The symmetries form an infinite dimensional Lie algebra.Comment: 9 page

    Correlation between Peak Energy and Peak Luminosity in Short Gamma-Ray Bursts

    Full text link
    A correlation between the peak luminosity and the peak energy has been found by Yonetoku et al. as LpEp,i2.0L_{p}\propto E_{p,i}^{2.0} for 11 pre-Swift long gamma-ray bursts. In this study, for a greatly expanded sample of 148 long gamma-ray bursts in the Swift era, we find that the correlation still exists, but most likely with a slightly different power-law index, i.e., LpEp,i1.7L_{p}\propto E_{p,i} ^{1.7}. In addition, we have collected 17 short gamma-ray bursts with necessary data. It is found that the correlation of LpEp,i1.7L_{p}\propto E_{p,i} ^{1.7} also exists for this sample of short events. It is argued that the radiation mechanism of both long and short gamma-ray bursts should be similar, i.e., of quasi-thermal origin caused by the photosphere and the dissipation occurring very near the central engine. Some key parameters of the process are constrained. Our results suggest that the radiation process of both long and short bursts may be dominated by thermal emission, rather than the single synchrotron radiation. This might put strong physical constraints on the theoretical models.Comment: 22 pages, 5 figures and 1 table, Accepted for publication in Ap

    On linear coupling of acoustic and cyclotron waves in plasma flows

    Full text link
    It is found that in magnetized electrostatic plasma flows the velocity shear couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable conditions, to their efficient reciprocal transformations. It is shown that in a two-dimensional setup this coupling has a remarkable feature: it is governed by equations that are exactly similar to the ones describing coupling of sound waves with internal gravity waves [Rogava & Mahajan: Phys. Rev. E vol.55, 1185 (1997)] in neutral fluid flows. Using another noteworthy quantum mechanical analogy we calculate transformation coefficients and give fully analytic, quantitative description of the coupling efficiency for flows with low shearing rates.Comment: 5 pages, no figures. Submitted to "Physics of Plasmas

    Ab Initio Simulation of the Nodal Surfaces of Heisenberg Antiferromagnets

    Get PDF
    The spin-half Heisenberg antiferromagnet (HAF) on the square and triangular lattices is studied using the coupled cluster method (CCM) technique of quantum many-body theory. The phase relations between different expansion coefficients of the ground-state wave function in an Ising basis for the square lattice HAF is exactly known via the Marshall-Peierls sign rule, although no equivalent sign rule has yet been obtained for the triangular lattice HAF. Here the CCM is used to give accurate estimates for the Ising-expansion coefficients for these systems, and CCM results are noted to be fully consistent with the Marshall-Peierls sign rule for the square lattice case. For the triangular lattice HAF, a heuristic rule is presented which fits our CCM results for the Ising-expansion coefficients of states which correspond to two-body excitations with respect to the reference state. It is also seen that Ising-expansion coefficients which describe localised, mm-body excitations with respect to the reference state are found to be highly converged, and from this result we infer that the nodal surface of the triangular lattice HAF is being accurately modeled. Using these results, we are able to make suggestions regarding possible extensions of existing quantum Monte Carlo simulations for the triangular lattice HAF.Comment: 24 pages, Latex, 3 postscript figure

    Lorentz and CPT Violating Chern-Simons Term in the Formulation of Functional Integral

    Get PDF
    We show that in the functional integral formalism the (finite) coefficient of the induced, Lorentz- and CPT-violating Chern-Simons term, arising from the Lorentz- and CPT-violating fermion sector, is undetermined.Comment: 5 pages, no figure, RevTe

    Gravitational Laser Back-Scattering

    Full text link
    A possible way of producing gravitons in the laboratory is investigated. We evaluate the cross section electron + photon \rightarrow electron + graviton in the framework of linearized gravitation, and analyse this reaction considering the photon coming either from a laser beam or from a Compton back-scattering process.Comment: 11 pages, 2 figures (available upon request), RevTeX, IFT-P.03/9
    corecore