42,999 research outputs found

    The cosmic dust analyzer: Experimental evaluation of an impact ionization model

    Get PDF
    A thermal equilibrium plasma model is used to process data from an impact ionization time-of-flight mass spectrometer in order to convert the raw ion data to relative abundances of the elemental constituents of cosmic dust particles

    Crossover from Fermi-Pasta-Ulam to normal diffusive behaviour in heat conduction through open anharmonic lattices

    Full text link
    We study heat conduction in one, two and three dimensional anharmonic lattices connected to stochastic Langevin heat baths. The inter-atomic potential of the lattices is double-well type, i.e., VDW(x)=k2x2/2+k4x4/4V_{\rm DW}(x)=k_2x^2/2+k_4 x^4/4 with k20k_20. We observe two different temperature regimes of transport: a high-temperature regime where asymptotic length dependence of nonequilibrium steady state heat current is similar to the well-known Fermi-Pasta-Ulam lattices with an inter-atomic potential, VFPU(x)=k2x2/2+k4x4/4V_{\rm FPU}(x)=k_2x^2/2+k_4 x^4/4 with k2,k4>0k_2,k_4>0. A low temperature regime where heat conduction is diffusive normal satisfying Fourier's law. We present our simulation results at different temperature regimes in all dimensions.Comment: 5 pages, 7 figure

    A continuous low star formation rate in IZw 18 ?

    Full text link
    Deep long-slit spectroscopic observations of the blue compact galaxy IZw 18 obtained with the CFH 3.6 m Telescope are presented. The very low value of oxygen abundance previously reported is confirmed and a very homogeneous abundance distribution is found (no variation larger than 0.05 dex) over the whole ionized region. We concur with Tenorio-Tagle (1996) and Devost et al. (1997) that the observed abundance level cannot result from the material ejected by the stars formed in the current burst, and propose that the observed metals were formed in a previous star formation episode. Metals ejected in the current burst of star formation remain most probably hidden in a hot phase and are undetectable using optical spectroscopy. We discuss different scenarios of star formation in IZw 18. Combining various observational facts, for instance the faint star formation rate observed in low surface brightness galaxies van Zee et al. (1997), it is proposed that a low and continuous rate of star formation occurring during quiescent phases between bursts could be a significant source of metal enrichment of the interstellar medium.Comment: 10 pages, 4 Postscript figures, to be published in Astronomy and Astrophysics main journa

    Physics Prospects at the Hadron Colliders

    Get PDF
    I start with a brief introduction to the elementary particles and their interactions, Higgs mechanism and supersymmetry. The major physics objectives of the Tevatron and LHC colliders are identified. The status and prospects of the top quark, charged Higgs boson and superparticle searches are discussed in detail, while those of the neutral Higgs boson(s) are covered in a parallel talk by R.J.N. Phillips at this workshop.Comment: 16 pages Latex + 15 figures (available on request

    Viscous corrections to the resistance of nano-junctions: a dispersion relation approach

    Get PDF
    It is well known that the viscosity of a homogeneous electron liquid diverges in the limits of zero frequency and zero temperature. A nanojunction breaks translational invariance and necessarily cuts off this divergence. However, the estimate of the ensuing viscosity is far from trivial. Here, we propose an approach based on a Kramers-Kr\"onig dispersion relation, which connects the zero-frequency viscosity, η(0)\eta(0), to the high-frequency shear modulus, μ\mu_{\infty}, of the electron liquid via η(0)=μτ\eta(0) =\mu_{\infty} \tau, with τ\tau the junction-specific momentum relaxation time. By making use of a simple formula derived from time-dependent current-density functional theory we then estimate the many-body contributions to the resistance for an integrable junction potential and find that these viscous effects may be much larger than previously suggested for junctions of low conductance.Comment: 6 pages, 5 figures, Revised versio

    FIBONACCI SUPERLATTICES OF NARROW-GAP III-V SEMICONDUCTORS

    Get PDF
    We report theoretical electronic structure of Fibonacci superlattices of narrow-gap III-V semiconductors. Electron dynamics is accurately described within the envelope-function approximation in a two-band model. Quasiperiodicity is introduced by considering two different III-V semiconductor layers and arranging them according to the Fibonacci series along the growth direction. The resulting energy spectrum is then found by solving exactly the corresponding effective-mass (Dirac-like) wave equation using tranfer-matrix techniques. We find that a self-similar electronic spectrum can be seen in the band structure. Electronic transport properties of samples are also studied and related to the degree of spatial localization of electronic envelope-functions via Landauer resistance and Lyapunov coefficient. As a working example, we consider type II InAs/GaSb superlattices and discuss in detail our results in this system.Comment: REVTeX 3.0, 16 pages, 8 figures available upon request. To appear in Semiconductor Science and Technolog

    Maximally Causal Quantum Mechanics

    Get PDF
    We present a new causal quantum mechanics in one and two dimensions developed recently at TIFR by this author and V. Singh. In this theory both position and momentum for a system point have Hamiltonian evolution in such a way that the ensemble of system points leads to position and momentum probability densities agreeing exactly with ordinary quantum mechanics.Comment: 7 pages,latex,no figures,to appear in Praman

    Diffraction limit of the sub-Planck structures

    Full text link
    The orthogonality of cat and displaced cat states, underlying Heisenberg limited measurement in quantum metrology, is studied in the limit of large number of states. The asymptotic expression for the corresponding state overlap function, controlled by the sub-Planck structures arising from phase space interference, is obtained exactly. The validity of large phase space support, in which context the asymptotic limit is achieved, is discussed in detail. For large number of coherent states, uniformly located on a circle, it identically matches with the diffraction pattern for a circular ring with uniform angular source strength. This is in accordance with the van Cittert-Zernike theorem, where the overlap function, similar to the mutual coherence function matches with a diffraction pattern.Comment: 5 pages, 3 figure

    Momentum-dependent contributions to the gravitational coupling of neutrinos in a medium

    Get PDF
    When neutrinos travel through a normal matter medium, the electron neutrinos couple differently to gravity compared to the other neutrinos, due to the presence of electrons in the medium and the absence of the other charged leptons. We calculate the momentum-dependent part of the matter-induced gravitational couplings of the neutrinos under such conditions, which arise at order g2/MW4g^2/M^4_W, and determine their contribution to the neutrino dispersion relation in the presence of a gravitational potential ϕext\phi^{\mathrm{ext}}. These new contributions vanish for the muon and tau neutrinos. For electron neutrinos with momentum KK, they are of the order of the usual Wolfenstein term times the factor (K2/MW2)ϕext(K^2/M^2_W)\phi^{\mathrm{ext}}, for high energy neutrinos. In environments where the gravitational potential is substantial, such as those in the vicinity of Active Galactic Nuclei, they could be the dominant term in the neutrino dispersion relation. They must also be taken into account in the analysis of possible violations of the Equivalence Principle in the neutrino sector, in experimental settings involving high energy neutrinos traveling through a matter background.Comment: Minor corrections in the references; one reference adde
    corecore