324 research outputs found
Decays of Non-strange Negative Parity Baryons in the 1/Nc Expansion
The decays of non-strange negative parity baryons via the emission of single
and mesons are analyzed in the framework of the expansion.
A basis of spin-flavor operators for the partial wave amplitudes is established
to order and the unknown effective coefficients are determined by
fitting to the S- and D-wave partial widths as provided by the Particle Data
Group. A set of relations between widths that result at the leading order, i.e.
order , is given and tested with the available data. Up to a few
exceptions, a good description of the partial decays widths is already obtained
at that order. Because of the rather large errors in the empirical input data
the next to leading order fit fails to pin down with satisfactory accuracy the
subleading effective coefficients. The hierarchy expected from the
expansion is reflected in the results.Comment: 24 pages, 8 table
Low-lying spectrum of the Y-string three-quark potential using hyper-spherical coordinates
We calculate the energies of three-quark states with definite permutation
symmetry (i.e. of SU(6) multiplets) in the N=0,1,2 shells, confined by the
Y-string three-quark potential. The exact Y-string potential consists of one,
so-called three-string term, and three angle-dependent two-string terms. Due to
this technical complication we treat the problem at three increasingly accurate
levels of approximation: 1) the (approximate) three-string potential expanded
to first order in trigonometric functions of hyper-spherical angles; 2) the
(approximate) three-string potential to all orders in the power expansion in
hyper-spherical harmonics, but without taking into account the transition(s) to
two-string potentials; 3) the exact minimal-length string potential to all
orders in power expansion in hyper-spherical harmonics, and taking into account
the transition(s) to two-string potentials. We show the general trend of
improvement %convergence of these approximations: The exact non-perturbative
corrections to the total energy are of the order of one per cent, as compared
with approximation 2), yet the exact energy differences between the
-plets are shifted to 2:2:0.9,
from the Bowler and Tynemouth separation rule 2:2:1, which is obeyed by
approximation 2) at the one per cent level. The precise value of the energy
separation of the first radial excitation ("Roper") -plet
from the -plet depends on the approximation, but does not become
negative, i.e. the "Roper" remains heavier than the odd-parity
-plet in all of our approximations.Comment: 19 pages, 6 figure
Critique of a Pion Exchange Model for Interquark Forces
I describe four serious defects of a widely discussed pion exchange model for
interquark forces: it doesn't solve the "spin-orbit problem" as advertised, it
fails to describe the internal structure of baryon resonances, it leads to
disastrous conclusions when extended to mesons, and it is not reasonably
connected to the physics of heavy-light systems.Comment: 20 pages, 6 figures; some clarifications and references adde
Masses of the 70- Baryons in Large Nc QCD
The masses of the negative parity 70-plet baryons are analyzed in large N_c
QCD to order 1/N_c and to first order in SU(3) symmetry breaking. The existing
experimental data are well reproduced and twenty new observables are predicted.
The leading order SU(6) spin-flavor symmetry breaking is small and, as it
occurs in the quark model, the subleading in 1/N_c hyperfine interaction is the
dominant source of the breaking. It is found that the Lambda(1405) and
Lambda(1520) are well described as three-quark states and spin-orbit partners.
New relations between splittings in different SU(3) multiplets are found.Comment: 11 pages; references were added and a couple of improvements to the
text were mad
Expansion for Excited Baryons
We derive consistency conditions which constrain the possible form of the
strong couplings of the excited baryons to the pions. The consistency
conditions follow from requiring the pion-excited baryon scattering amplitudes
to satisfy the large-N_c Witten counting rules and are analogous to consistency
conditions used by Dashen, Jenkins and Manohar and others for s-wave baryons.
The consistency conditions are explicitly solved, giving the most general
allowed form of the strong vertices for excited baryons in the large-N_c limit.
We show that the solutions to the large-N_c consistency conditions coincide
with the predictions of the nonrelativistic quark model for these states,
extending the results previously obtained for the s-wave baryons. The 1/N_c
corrections to these predictions are studied in the quark model with arbitrary
number of colors N_c.Comment: 56 pages, REVTeX; one new Appendix added containing a discussion of
the results in the language of quark operator
Decays of Baryons --- Quark Model versus Large-
We study nonleptonic decays of the orbitally excited, \su6 \rep{70}-plet
baryons in order to test the hypothesis that the successes of the
nonrelativistic quark model have a natural explanation in the large- limit
of QCD. By working in a Hartree approximation, we isolate a specific set of
operators that contribute to the observed s- and d-wave decays in leading order
in . We fit our results to the current experimental decay data, and make
predictions for a number of allowed but unobserved modes. Our tentative
conclusion is that there is more to the nonrelativistic quark model of baryons
than large-.Comment: LaTeX 49pp. (38 pp. landscape), PicTex, PrePicTex, PostPicTex
required for 3 figures, Harvard Preprint HUTP-94/A008. (Two additional
operators are included, but conclusions are unchanged.
Negative Parity 70-plet Baryon Masses in the 1/Nc Expansion
The masses of the negative parity SU(6) 70-plet baryons are analyzed in the
1/Nc expansion to order 1/Nc and to first order in SU(3) breaking. At this
level of precision there are twenty predictions. Among them there are the well
known Gell-Mann Okubo and equal spacing relations, and four new relations
involving SU(3) breaking splittings in different SU(3) multiplets. Although the
breaking of SU(6) symmetry occurs at zeroth order in 1/Nc, it turns out to be
small. The dominant source of the breaking is the hyperfine interaction which
is of order 1/Nc. The spin-orbit interaction, of zeroth order in 1/Nc, is
entirely fixed by the splitting between the singlet states Lambda(1405) and
Lambda(1520), and the spin-orbit puzzle is solved by the presence of other
zeroth order operators involving flavor exchange.Comment: 31 pages, 3 figure
P-odd and CP-odd Four-Quark Contributions to Neutron EDM
In a class of beyond-standard-model theories, CP-odd observables, such as the
neutron electric dipole moment, receive significant contributions from
flavor-neutral P-odd and CP-odd four-quark operators. However, considerable
uncertainties exist in the hadronic matrix elements of these operators strongly
affecting the experimental constraints on CP-violating parameters in the
theories. Here we study their hadronic matrix elements in combined chiral
perturbation theory and nucleon models. We first classify the operators in
chiral representations and present the leading-order QCD evolutions. We then
match the four-quark operators to the corresponding ones in chiral hadronic
theory, finding symmetry relations among the matrix elements. Although this
makes lattice QCD calculations feasible, we choose to estimate the
non-perturbative matching coefficients in simple quark models. We finally
compare the results for the neutron electric dipole moment and P-odd and CP-odd
pion-nucleon couplings with the previous studies using naive factorization and
QCD sum rules. Our study shall provide valuable insights on the present
hadronic physics uncertainties in these observables.Comment: 40 pages, 7 figures. This is the final version. A discussion of the
uncertainty of the calculation is adde
LC–MS/MS determination of carbamathione in microdialysis samples from rat brain and plasma
A selective liquid chromatography–tandem mass spectrometric (LC–MS/MS) method was developed for the determination of S-(N, N-diethylcarbamoyl) glutathione (carbamathione) in microdialysis samples from rat brain and plasma. S-(N, N-Diethylcarbamoyl) glutathione (carbamathione) is a metabolite of disulfiram. This metabolite may be responsible for disulfiram’s effectiveness in the treatment of cocaine dependence. An analytical method using liquid chromatography–tandem mass spectrometric (LC–MS/MS) was developed to determine carbamathione in vivo using microdialysis sampling from rat brain and plasma. Chromatographic separations were carried out on an Alltech Altima C-18 (50 mm long × 2.1 mm i.d., 3 μm particles) analytical column at a flow rate of 0.3 ml/min. Solvent A consisted of 10 mM ammonium formate, methanol, and formic acid (99:1:0.06, v/v/v). Solvent B consisted of methanol, 10 mM ammonium formate and formic acid (99:1:0.06, v/v/v). A 20 min linear gradient from 95% aqueous to 95% organic was used. Tandem mass spectra were acquired on a Micromass Quattro Ultima “triple” quadrupole mass spectrometer equipped with an ESI interface. Quantitative mass spectrometric analysis was conducted in positive ion mode selected reaction monitoring (SRM) mode looking at the transition of m/z 407–100 and 175 for carbamathione and m/z 392–263 for the internal standard S-hexyl glutathione. The simultaneous collection of microdialysate from blood and brain was used to monitor carbamathione concentrations centrally and peripherally. Good linearity was obtained over a concentration range of 0.25–10,000 nM. The lowest limit of quantification (LLOQ) was determined to be 1 nM and the lowest limit of detection (LLOD) was calculated to be 0.25 nM. Intra- and inter-day accuracy and precision were determined and for all the samples evaluated, the variability was less that 10% (R.S.D.)
Vertex functions for d-wave mesons in the light-front approach
While the light-front quark model (LFQM) is employed to calculate hadronic
transition matrix elements, the vertex functions must be pre-determined. In
this work we derive the vertex functions for all d-wave states in this model.
Especially, since both of and are mesons, the Lorentz
structures of their vertex functions are the same. Thus when one needs to study
the processes where is involved, all the corresponding formulas for
states can be directly applied, only the coefficient of the vertex
function should be replaced by that for . The results would be useful
for studying the newly observed resonances which are supposed to be d-wave
mesons and furthermore the possible 2S-1D mixing in with the LFQM.Comment: 12 pages, 2 figures, some typos corrected and more discussions added.
Accepted by EPJ
- …
