69,131 research outputs found
The role of nonthermal electrons in the optical continuum of stellar flares
We explore the possibility that the continuum emission in stellar flares is
powered by nonthermal electrons accelerated during the flares. We compute the
continuum spectra from an atmospheric model for a dMe star, AD Leo, at its
quiescent state, when considering the nonthermal excitation and ionisation
effects by precipitating electron beams. The results show that if the electron
beam has an energy flux large enough, the U band brightening and, in
particular, the U-B colour are roughly comparable with observed values for a
typical large flare. Moreover, for electron beams with a moderate energy flux,
a decrease of the emission at the Paschen continuum appears. This can explain
at least partly the continuum dimming observed in some stellar flares. Adopting
an atmospheric model for the flaring state can further raise the continuum flux
but it yields a spectral colour incomparable with observations. This implies
that the nonthermal effects may play the chief role in powering the continuum
emission in some stellar flares.Comment: 6 pages, 4 figures, LaTeX (psfigs.sty), to appear in MNRA
High-Energy Neutrinos from Millisecond Magnetars formed from the Merger of Binary Neutron Stars
The merger of a neutron star (NS) binary may result in the formation of a
long-lived, or indefinitely stable, millisecond magnetar remnant surrounded by
a low-mass ejecta shell. A portion of the magnetar's prodigious rotational
energy is deposited behind the ejecta in a pulsar wind nebula, powering
luminous optical/X-ray emission for hours to days following the merger. Ions in
the pulsar wind may also be accelerated to ultra-high energies, providing a
coincident source of high energy cosmic rays and neutrinos. At early times, the
cosmic rays experience strong synchrotron losses; however, after a day or so,
pion production through photomeson interaction with thermal photons in the
nebula comes to dominate, leading to efficient production of high-energy
neutrinos. After roughly a week, the density of background photons decreases
sufficiently for cosmic rays to escape the source without secondary production.
These competing effects result in a neutrino light curve that peaks on a few
day timescale near an energy of eV. This signal may be detectable
for individual mergers out to 10 (100) Mpc by current (next-generation)
neutrino telescopes, providing clear evidence for a long-lived NS remnant, the
presence of which may otherwise be challenging to identify from the
gravitational waves alone. Under the optimistic assumption that a sizable
fraction of NS mergers produce long-lived magnetars, the cumulative
cosmological neutrino background is estimated to be for a NS merger rate of , overlapping with IceCube's current sensitivity and within
the reach of next-generation neutrino telescopes.Comment: 13 pages, 5 figures, accepted for publication in Ap
Optimal Control of Brucellosis in Bison in the Yellowstone National Park Area
Brucellosis is a highly infectious bacterial disease that causes infected females to abort their calves. It has caused devastating losses to U.S. farmers over the last century. The only known focus of Brucellosis left in the nation is wildlife such as bison and elk in the Greater Yellowstone Area. Vaccination and test-and-slaughter have been applied to brucellosis management in bison, and there has been discussion that a combination of both could potentially eradicate the disease in the Yellowstone National Park. However, there is no study on how to allocate resources between the two actions. This paper investigates the optimal allocation of these two selective management options, in a bioeconomic framework, when there are both existence and recreational values for the wildlife host (bison) and when the host puts the livestock sector at risk.Bioeconomics, brucellosis, disease ecology, epidemiology, optimal control, susceptible-infected-recovered (SIR) model, Resource /Energy Economics and Policy,
ALTKAL: An optimum linear filter for GEOS-3 altimeter data
ALTKAL is a computer program designed to smooth sea surface height data obtained from the GEOS 3 altimeter, and to produce minimum variance estimates of sea surface height and sea surface slopes, along with their standard derivations. The program operates by processing the data through a Kalman filter in both the forward and backward directions, and optimally combining the results. The sea surface height signal is considered to have a geoid signal, modeled by a third order Gauss-Markov process, corrupted by additive white noise. The governing parameters for the signal and noise processes are the signal correlation length and the signal-to-noise ratio. Mathematical derivations of the filtering and smoothing algorithms are presented. The smoother characteristics are illustrated by giving the frequency response, the data weighting sequence and the transfer function of a realistic steady-state smoother example. Based on nominal estimates for geoidal undulation amplitude and correlation length, standard deviations for the estimated sea surface height and slope are 12 cm and 3 arc seconds, respectively
Topological magnetoplasmon
Classical wave fields are real-valued, ensuring the wave states at opposite
frequencies and momenta to be inherently identical. Such a particle-hole
symmetry can open up new possibilities for topological phenomena in classical
systems. Here we show that the historically studied two-dimensional (2D)
magnetoplasmon, which bears gapped bulk states and gapless one-way edge states
near zero frequency, is topologically analogous to the 2D topological p+\Ii p
superconductor with chiral Majorana edge states and zero modes. We further
predict a new type of one-way edge magnetoplasmon at the interface of opposite
magnetic domains, and demonstrate the existence of zero-frequency modes bounded
at the peripheries of a hollow disk. These findings can be readily verified in
experiment, and can greatly enrich the topological phases in bosonic and
classical systems.Comment: 12 pages, 6 figures, 1 supporting materia
Increasing the Analytical Accessibility of Multishell and Diffusion Spectrum Imaging Data Using Generalized Q-Sampling Conversion
Many diffusion MRI researchers, including the Human Connectome Project (HCP),
acquire data using multishell (e.g., WU-Minn consortium) and diffusion spectrum
imaging (DSI) schemes (e.g., USC-Harvard consortium). However, these data sets
are not readily accessible to high angular resolution diffusion imaging (HARDI)
analysis methods that are popular in connectomics analysis. Here we introduce a
scheme conversion approach that transforms multishell and DSI data into their
corresponding HARDI representations, thereby empowering HARDI-based analytical
methods to make use of data acquired using non-HARDI approaches. This method
was evaluated on both phantom and in-vivo human data sets by acquiring
multishell, DSI, and HARDI data simultaneously, and comparing the converted
HARDI, from non-HARDI methods, with the original HARDI data. Analysis on the
phantom shows that the converted HARDI from DSI and multishell data strongly
predicts the original HARDI (correlation coefficient > 0.9). Our in-vivo study
shows that the converted HARDI can be reconstructed by constrained spherical
deconvolution, and the fiber orientation distributions are consistent with
those from the original HARDI. We further illustrate that our scheme conversion
method can be applied to HCP data, and the converted HARDI do not appear to
sacrifice angular resolution. Thus this novel approach can benefit all
HARDI-based analysis approaches, allowing greater analytical accessibility to
non-HARDI data, including data from the HCP
- …
