69,131 research outputs found

    The role of nonthermal electrons in the optical continuum of stellar flares

    Get PDF
    We explore the possibility that the continuum emission in stellar flares is powered by nonthermal electrons accelerated during the flares. We compute the continuum spectra from an atmospheric model for a dMe star, AD Leo, at its quiescent state, when considering the nonthermal excitation and ionisation effects by precipitating electron beams. The results show that if the electron beam has an energy flux large enough, the U band brightening and, in particular, the U-B colour are roughly comparable with observed values for a typical large flare. Moreover, for electron beams with a moderate energy flux, a decrease of the emission at the Paschen continuum appears. This can explain at least partly the continuum dimming observed in some stellar flares. Adopting an atmospheric model for the flaring state can further raise the continuum flux but it yields a spectral colour incomparable with observations. This implies that the nonthermal effects may play the chief role in powering the continuum emission in some stellar flares.Comment: 6 pages, 4 figures, LaTeX (psfigs.sty), to appear in MNRA

    High-Energy Neutrinos from Millisecond Magnetars formed from the Merger of Binary Neutron Stars

    Full text link
    The merger of a neutron star (NS) binary may result in the formation of a long-lived, or indefinitely stable, millisecond magnetar remnant surrounded by a low-mass ejecta shell. A portion of the magnetar's prodigious rotational energy is deposited behind the ejecta in a pulsar wind nebula, powering luminous optical/X-ray emission for hours to days following the merger. Ions in the pulsar wind may also be accelerated to ultra-high energies, providing a coincident source of high energy cosmic rays and neutrinos. At early times, the cosmic rays experience strong synchrotron losses; however, after a day or so, pion production through photomeson interaction with thermal photons in the nebula comes to dominate, leading to efficient production of high-energy neutrinos. After roughly a week, the density of background photons decreases sufficiently for cosmic rays to escape the source without secondary production. These competing effects result in a neutrino light curve that peaks on a few day timescale near an energy of 1018\sim10^{18} eV. This signal may be detectable for individual mergers out to \sim 10 (100) Mpc by current (next-generation) neutrino telescopes, providing clear evidence for a long-lived NS remnant, the presence of which may otherwise be challenging to identify from the gravitational waves alone. Under the optimistic assumption that a sizable fraction of NS mergers produce long-lived magnetars, the cumulative cosmological neutrino background is estimated to be 109108GeVcm2s1sr1\sim 10^{-9}-10^{-8}\,\rm GeV\,cm^{-2}\,s^{-1}\,sr^{-1} for a NS merger rate of 107Mpc3yr110^{-7}\,\rm Mpc^{-3}\,yr^{-1}, overlapping with IceCube's current sensitivity and within the reach of next-generation neutrino telescopes.Comment: 13 pages, 5 figures, accepted for publication in Ap

    Optimal Control of Brucellosis in Bison in the Yellowstone National Park Area

    Get PDF
    Brucellosis is a highly infectious bacterial disease that causes infected females to abort their calves. It has caused devastating losses to U.S. farmers over the last century. The only known focus of Brucellosis left in the nation is wildlife such as bison and elk in the Greater Yellowstone Area. Vaccination and test-and-slaughter have been applied to brucellosis management in bison, and there has been discussion that a combination of both could potentially eradicate the disease in the Yellowstone National Park. However, there is no study on how to allocate resources between the two actions. This paper investigates the optimal allocation of these two selective management options, in a bioeconomic framework, when there are both existence and recreational values for the wildlife host (bison) and when the host puts the livestock sector at risk.Bioeconomics, brucellosis, disease ecology, epidemiology, optimal control, susceptible-infected-recovered (SIR) model, Resource /Energy Economics and Policy,

    ALTKAL: An optimum linear filter for GEOS-3 altimeter data

    Get PDF
    ALTKAL is a computer program designed to smooth sea surface height data obtained from the GEOS 3 altimeter, and to produce minimum variance estimates of sea surface height and sea surface slopes, along with their standard derivations. The program operates by processing the data through a Kalman filter in both the forward and backward directions, and optimally combining the results. The sea surface height signal is considered to have a geoid signal, modeled by a third order Gauss-Markov process, corrupted by additive white noise. The governing parameters for the signal and noise processes are the signal correlation length and the signal-to-noise ratio. Mathematical derivations of the filtering and smoothing algorithms are presented. The smoother characteristics are illustrated by giving the frequency response, the data weighting sequence and the transfer function of a realistic steady-state smoother example. Based on nominal estimates for geoidal undulation amplitude and correlation length, standard deviations for the estimated sea surface height and slope are 12 cm and 3 arc seconds, respectively

    Topological magnetoplasmon

    Get PDF
    Classical wave fields are real-valued, ensuring the wave states at opposite frequencies and momenta to be inherently identical. Such a particle-hole symmetry can open up new possibilities for topological phenomena in classical systems. Here we show that the historically studied two-dimensional (2D) magnetoplasmon, which bears gapped bulk states and gapless one-way edge states near zero frequency, is topologically analogous to the 2D topological p+\Ii p superconductor with chiral Majorana edge states and zero modes. We further predict a new type of one-way edge magnetoplasmon at the interface of opposite magnetic domains, and demonstrate the existence of zero-frequency modes bounded at the peripheries of a hollow disk. These findings can be readily verified in experiment, and can greatly enrich the topological phases in bosonic and classical systems.Comment: 12 pages, 6 figures, 1 supporting materia

    Increasing the Analytical Accessibility of Multishell and Diffusion Spectrum Imaging Data Using Generalized Q-Sampling Conversion

    Full text link
    Many diffusion MRI researchers, including the Human Connectome Project (HCP), acquire data using multishell (e.g., WU-Minn consortium) and diffusion spectrum imaging (DSI) schemes (e.g., USC-Harvard consortium). However, these data sets are not readily accessible to high angular resolution diffusion imaging (HARDI) analysis methods that are popular in connectomics analysis. Here we introduce a scheme conversion approach that transforms multishell and DSI data into their corresponding HARDI representations, thereby empowering HARDI-based analytical methods to make use of data acquired using non-HARDI approaches. This method was evaluated on both phantom and in-vivo human data sets by acquiring multishell, DSI, and HARDI data simultaneously, and comparing the converted HARDI, from non-HARDI methods, with the original HARDI data. Analysis on the phantom shows that the converted HARDI from DSI and multishell data strongly predicts the original HARDI (correlation coefficient > 0.9). Our in-vivo study shows that the converted HARDI can be reconstructed by constrained spherical deconvolution, and the fiber orientation distributions are consistent with those from the original HARDI. We further illustrate that our scheme conversion method can be applied to HCP data, and the converted HARDI do not appear to sacrifice angular resolution. Thus this novel approach can benefit all HARDI-based analysis approaches, allowing greater analytical accessibility to non-HARDI data, including data from the HCP
    corecore