221 research outputs found

    Exploring the Gut Microbiota–Muscle Axis in Duchenne Muscular Dystrophy

    Get PDF
    The gut microbiota plays a pivotal role in maintaining the dynamic balance of intestinal epithelial and immune cells, crucial for overall organ homeostasis. Dysfunctions in these intricate relationships can lead to inflammation and contribute to the pathogenesis of various diseases. Recent findings uncovered the existence of a gut–muscle axis, revealing how alterations in the gut microbiota can disrupt regulatory mechanisms in muscular and adipose tissues, triggering immune-mediated inflammation. In the context of Duchenne muscular dystrophy (DMD), alterations in intestinal permeability stand as a potential origin of molecules that could trigger muscle degeneration via various pathways. Metabolites produced by gut bacteria, or fragments of bacteria themselves, may have the ability to migrate from the gut into the bloodstream and ultimately infiltrate distant muscle tissues, exacerbating localized pathologies. These insights highlight alternative pathological pathways in DMD beyond the musculoskeletal system, paving the way for nutraceutical supplementation as a potential adjuvant therapy. Understanding the complex interplay between the gut microbiota, immune system, and muscular health offers new perspectives for therapeutic interventions beyond conventional approaches to efficiently counteract the multifaceted nature of DMD

    A novel piggybac transposon inducible expression system identifies a role for akt signalling in primordial germ cell migration

    Get PDF
    In this work, we describe a single piggyBac transposon system containing both a tet-activator and a doxycycline-inducible expression cassette. We demonstrate that a gene product can be conditionally expressed from the integrated transposon and a second gene can be simultaneously targeted by a short hairpin RNA contained within the transposon, both in vivo and in mammalian and avian cell lines. We applied this system to stably modify chicken primordial germ cell (PGC) lines in vitro and induce a reporter gene at specific developmental stages after injection of the transposon-modified germ cells into chicken embryos. We used this vector to express a constitutively-active AKT molecule during PGC migration to the forming gonad. We found that PGC migration was retarded and cells could not colonise the forming gonad. Correct levels of AKT activation are thus essential for germ cell migration during early embryonic development

    Colour preference of the deer ked Lipoptena fortisetosa (Diptera: Hippoboscidae)

    Get PDF
    SIMPLE SUMMARY: Insects use visual stimuli to find habitats, food, or a mate while moving around. This trait might be exploited to intercept flying insects to monitor their populations and reduce their presence. Among the various visual stimuli, colours are commonly used to attract insects. Lipoptena fortisetosa is a hematophagous deer ectoparasite native to Japan that has spread to several central European countries and was recently recorded in Italy. Measures to monitor and control L. fortisetosa would be helpful given its potential threat as a pathogen vector for animals and humans. The objective of this research was to assess the potential use of colour to attract and trap L. fortisetosa. The response of the winged adults was evaluated through an experimental trial carried out in a wooded area of Tuscany using differently coloured sticky panels as traps. Blue panels attracted the highest number while yellow panels showed the lowest performance. This preference for blue could be useful in the design of traps to reduce the population of this parasitic fly which, at certain times, can reach a very high density, causing annoyance to wildlife and humans visiting natural areas. ABSTRACT: Lipoptena fortisetosa, a deer ked native to Japan, has established itself in several European countries and was recently recorded in Italy. This hippoboscid ectoparasite can develop high density populations, causing annoyance to animals and concern regarding the potential risk of transmitting pathogens to humans. No monitoring or control methods for L. fortisetosa have been applied or tested up to now. This research evaluated the possible response of L. fortisetosa winged adults to different colours as the basis for a monitoring and control strategy. In the summer of 2020, a series of six differently coloured sticky panels were randomly set as traps in a wooded area used by deer for resting. The results indicated a clear preference of the deer ked for the blue panels that caught the highest number of flies during the experimental period. Lower numbers of flies were trapped on the red, green, black, and white panels, with the yellow panels recording the fewest captures. The response clearly demonstrates that this species displays a colour preference, and that coloured traps might be useful for monitoring and limiting this biting ectoparasite in natural areas harbouring wildlife and visited by people

    Inhibition of the immunoproteasome modulates innate immunity to ameliorate muscle pathology of dysferlin-deficient BlAJ mice

    Get PDF
    Muscle repair in dysferlinopathies is defective. Although macrophage (Mø)-rich infiltrates are prominent in damaged skeletal muscles of patients with dysferlinopathy, the contribution of the immune system to the disease pathology remains to be fully explored. Numbers of both pro-inflammatory M1 Mø and effector T cells are increased in muscle of dysferlin-deficient BlAJ mice. In addition, symptomatic BlAJ mice have increased muscle production of immunoproteasome. In vitro analyses using bone marrow-derived Mø of BlAJ mice show that immunoproteasome inhibition results in C3aR1 and C5aR1 downregulation and upregulation of M2-associated signaling. Administration of immunoproteasome inhibitor ONX-0914 to BlAJ mice rescues muscle function by reducing muscle infiltrates and fibro-adipogenesis. These findings reveal an important role of immunoproteasome in the progression of muscular dystrophy in BlAJ mouse and suggest that inhibition of immunoproteasome may produce therapeutic benefit in dysferlinopathy

    PTX3 Predicts Myocardial Damage and Fibrosis in Duchenne Muscular Dystrophy

    Get PDF
    Pentraxin 3 (PTX3) is a main component of the innate immune system by inducing complement pathway activation, acting as an inflammatory mediator, coordinating the functions of macrophages/dendritic cells and promoting apoptosis/necrosis. Additionally, it has been found in fibrotic regions co-localizing with collagen. In this work, we wanted to investigate the predictive role of PTX3 in myocardial damage and fibrosis of Duchenne muscular dystrophy (DMD). DMD is an X-linked recessive disease caused by mutations of the dystrophin gene that affects muscular functions and strength and accompanying dilated cardiomyopathy. Here, we expound the correlation of PTX3 cardiac expression with age and Toll-like receptors (TLRs)/interleukin-1 receptor (IL-1R)-MyD88 inflammatory markers and its modulation by the so-called alarmins IL-33, high-mobility group box 1 (HMGB1), and S100β. These findings suggest that cardiac levels of PTX3 might have prognostic value and potential in guiding therapy for DMD cardiomyopathy

    Modulation of Neurexins Alternative Splicing by Cannabinoid Receptors 1 (CB1) Signaling

    Get PDF
    \ua9 2025 by the authors. Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding thousands of isoforms with different properties of interaction with post-synaptic molecules for a quick adaptation to internal and external inputs. The endocannabinoid system also plays a central role in synaptic plasticity, regulating key retrograde signaling at both excitatory and inhibitory synapses. This study aims at elucidating the crosstalk between alternative splicing of neurexin and the endocannabinoid system in the hippocampus. By employing an ex vivo hippocampal system, we found that pharmacological activation of cannabinoid receptor 1 (CB1) with the specific agonist ACEA led to reduced neurotransmission, associated with increased expression of the Nrxn1–3 spliced isoforms excluding the exon at splice site 4 (SS4−). In contrast, treatment with the CB1 antagonist AM251 increased glutamatergic activity and promoted the expression of the Nrxn variants including the exon (SS4+) Knockout of the involved splicing factor SLM2 determined the suppression of the exon splicing at SS4 and the expression only of the SS4+ variants of Nrxns1–3 transcripts. Interestingly, in SLM2 ko hippocampus, modulation of neurotransmission by AM251 or ACEA was abolished. These findings suggest a direct crosstalk between CB1-dependent signaling, neurotransmission and expression of specific Nrxns splice variants in the hippocampus. We propose that the fine-tuned regulation of Nrxn1–3 genes alternative splicing may play an important role in the feedback control of neurotransmission by the endocannabinoid system

    Generation of the Becker muscular dystrophy patient derived induced pluripotent stem cell line carrying the DMD splicing mutation c.1705-8 T>C

    Get PDF
    Becker Muscular dystrophy (BMD) is an X-linked syndrome characterized by progressive muscle weakness. BMD is generally less severe than Duchenne Muscular Dystrophy. BMD is caused by mutations in the dystrophin gene that normally give rise to the production of a truncated but partially functional dystrophin protein. We generated an induced pluripotent cell line from dermal fibroblasts of a BMD patient carrying a splice mutation in the dystrophin gene (c.1705-8 T>C). The iPSC cell-line displayed the characteristic pluripotent-like morphology, expressed pluripotency markers, differentiated into cells of the three germ layers and had a normal karyotype

    Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation. The type 2 IGF receptor (IGF2R) modulates circulating and tissue levels of IGF2 by targeting it to lysosomes for degradation. We found that IGF2R and the store-operated Ca2+ channel CD20 share a common hydrophobic binding motif that stabilizes their association. Silencing CD20 decreased myoblast differentiation, whereas blockade of IGF2R increased proliferation and differentiation in myoblasts via the calmodulin/calcineurin/NFAT pathway. Remarkably, anti-IGF2R induced CD20 phosphorylation, leading to the activation of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) and removal of intracellular Ca2+. Interestingly, we found that IGF2R expression was increased in dystrophic skeletal muscle of human DMD patients and mdx mice. Blockade of IGF2R by neutralizing antibodies stimulated muscle regeneration, induced force recovery and normalized capillary architecture in dystrophic mdx mice representing an encouraging starting point for the development of new biological therapies for DMD
    corecore