5,913 research outputs found

    The Effects of Variable Capital Utilization on the Measurement and Properties of Sectoral Productivity: Some International Evidence

    Get PDF
    This paper explores how accounting for variations in factor utilization rates alters the empirical characteristics of productivity residuals in the United States and Canada. Using data on 19 manufacturing industries, we study the behavior of productivity using three proxies for capital services. We find that adjusting for cyclical movements in capital utilization alters many of the empirical characteristics of productivity, both within and across countries.

    Close packing density of polydisperse hard spheres

    Full text link
    The most efficient way to pack equally sized spheres isotropically in 3D is known as the random close packed state, which provides a starting point for many approximations in physics and engineering. However, the particle size distribution of a real granular material is never monodisperse. Here we present a simple but accurate approximation for the random close packing density of hard spheres of any size distribution, based upon a mapping onto a one-dimensional problem. To test this theory we performed extensive simulations for mixtures of elastic spheres with hydrodynamic friction. The simulations show a general (but weak) dependence of the final (essentially hard sphere) packing density on fluid viscosity and on particle size, but this can be eliminated by choosing a specific relation between mass and particle size, making the random close packed volume fraction well-defined. Our theory agrees well with the simulations for bidisperse, tridisperse and log-normal distributions, and correctly reproduces the exact limits for large size ratios.Comment: 8 pages, 8 figures, accepted for publication in J. Chem. Phy

    The Mass Distribution of Stellar-Mass Black Holes

    Get PDF
    We perform a Bayesian analysis of the mass distribution of stellar-mass black holes using the observed masses of 15 low-mass X-ray binary systems undergoing Roche lobe overflow and five high-mass, wind-fed X-ray binary systems. Using Markov Chain Monte Carlo calculations, we model the mass distribution both parametrically---as a power law, exponential, gaussian, combination of two gaussians, or log-normal distribution---and non-parametrically---as histograms with varying numbers of bins. We provide confidence bounds on the shape of the mass distribution in the context of each model and compare the models with each other by calculating their relative Bayesian evidence as supported by the measurements, taking into account the number of degrees of freedom of each model. The mass distribution of the low-mass systems is best fit by a power-law, while the distribution of the combined sample is best fit by the exponential model. We examine the existence of a "gap" between the most massive neutron stars and the least massive black holes by considering the value, M_1%, of the 1% quantile from each black hole mass distribution as the lower bound of black hole masses. The best model (the power law) fitted to the low-mass systems has a distribution of lower-bounds with M_1% > 4.3 Msun with 90% confidence, while the best model (the exponential) fitted to all 20 systems has M_1% > 4.5 Msun with 90% confidence. We conclude that our sample of black hole masses provides strong evidence of a gap between the maximum neutron star mass and the lower bound on black hole masses. Our results on the low-mass sample are in qualitative agreement with those of Ozel, et al (2010).Comment: 56 pages, 22 figures, 9 tables, as accepted by Ap

    Imaging Radar Observations Of Normal Faults In Tibet

    Get PDF
    NASA/JPL has an ongoing program to study land processes that will lead to a better understanding of the geologic evolution of the continents and the history of global climate change. Northwestern China and Tibet are key areas for these investigations because arid regions such as these retain the record of climate change and a wide variety of large-scale structures are present throughout the area as a result of the continuing collision between the Indian and Asian plates. During the Shuttle Imaging Radar Missions (SIR-A and SIR-B) a number of image swaths were acquired over the People's Republic of China that show interesting landforms indicative of climate change and large-scale faulting in the arid regions of Tibet and northwestern China. One of the 50-km wide swaths (data-take 32-33) passed from northeastern India, through Lhasa and southern Tibet, to the Karakorum Himalaya and beyond. This swath provides a view of several active faults related to the collision between India and Asia, in particular, normal faults in the Yangbajain Valley, northeast of Lhasa. The scarps are oriented N12°E±16° and most of them dip to the west, which is generally within a few degrees of being parallel to the illumination direction of SIR-A. Since conventional interpretation of the interaction of radar signals with steep scarps predicts that they will not be visible if the illumination azimuth is nearly parallel to the scarp strike because of a lack of the "highlighting" that occurs when a scarp face is oriented normal to the incoming illumination, it is surprising they show up in such light tones on the SIR-A image. The most likely reason for the high radar returns from the scarp faces is that their surfaces are rougher than the smooth, grass-covered valley floor. Height, slope-angle, and surface-roughness measurements were obtained on several scarps and we found that scarps which were visible on the SIR-A image are higher than 5 m and are rough at the decimeter to meter scale. This result is significant since orbital radar sensors can obtain high-resolution images of large areas that are difficult to access, and it appears that they may provide an efficient means with which to survey large areas, extrapolate local observations, and derive quantitative estimates of rates of tectonic processes

    Ultra-light hierarchical meta-materials on a body-centred cubic lattice

    Get PDF
    Modern fabrication techniques offer the freedom to design and manufacture structures with complex geometry on many lengthscales, offering many potential advantages. For example, fractal/hierarchical struts have been shown to be exceptionally strong and yet light (Rayneau-Kirkhope D. et al., Phys. Rev. Lett., 109 (2012) 204301). In this letter, we propose a new class of meta-material, constructed from fractal or hierarchical struts linking a specific set of lattice points. We present a mechanical analysis of this meta-material resulting from a body-centred cubic (BCC) lattice. We show that, through the use of hierarchy, the material usage follows an enhanced scaling relation, and both material property and overall efficiency can be optimised for a specific applied stress. Such a design has the potential of providing the next generation of lightweight, buckling-resistant meta-materials

    Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers

    Get PDF
    Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging

    Time evolution of a non-singular primordial black hole

    Full text link
    There is growing notion that black holes may not contain curvature singularities (and that indeed nature in general may abhor such spacetime defects). This notion could have implications on our understanding of the evolution of primordial black holes (PBHs) and possibly on their contribution to cosmic energy. This paper discusses the evolution of a non-singular black hole (NSBH) based on a recent model [1]. We begin with a study of the thermodynamic process of the black hole in this model, and demonstrate the existence of a maximum horizon temperature T_{max}, corresponding to a unique mass value. At this mass value the specific heat capacity C changes signs to positive and the body begins to lose its black hole characteristics. With no loss of generality, the model is used to discuss the time evolution of a primordial black hole (PBH), through the early radiation era of the universe to present, under the assumption that PBHs are non-singular. In particular, we track the evolution of two benchmark PBHs, namely the one radiating up to the end of the cosmic radiation domination era, and the one stopping to radiate currently, and in each case determine some useful features including the initial mass m_{f} and the corresponding time of formation t_{f}. It is found that along the evolutionary history of the universe the distribution of PBH remnant masses (PBH-RM) PBH-RMs follows a power law. We believe such a result can be a useful step in a study to establish current abundance of PBH-MRs.Comment: To appear in Int. J. Mod. Phys.

    Spaceborne radar observations: A guide for Magellan radar-image analysis

    Get PDF
    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described
    corecore