3,155 research outputs found
Environmental effects on magnetic fluorescent powder development of fingermarks on bird of prey feathers
A comparison study of the effects of environmental conditions on the development of latent fingermarks on raptor feathers using green magnetic fluorescent powder was undertaken using both sebaceous loaded and natural fingermark deposits. Sparrowhawk feathers were stored in indoor conditions for 60 days (Study 1), and buzzard feathers were left exposed to two different environmental conditions (hidden and visible) for 21 days (Study 2), with developments made at regular ageing periods. In Study 1, latent fingermarks were successfully developed (Grade 1–4) on the indoor feathers up to 60 days after deposition – 98.6% of the loaded deposits and 85.3% for natural deposits. Under outdoor conditions in Study 2, both loaded and natural deposits were affected by environmental exposure. Latent fingermarks were successfully developed up to 14 days after deposition on the outdoor feathers, with some occasional recovery after 21 days. The visible feathers recorded 34.7% (loaded) and 16.4% (natural) successful developments (Grade 1–4), whereas the hidden feathers recorded 46.7% (loaded) and 22.2% (natural) successful developments, suggesting that protection from the environment helps to preserve latent fingermarks on the surface of a feather. Environmental exposure accelerated the deterioration of ridge detail and the number of successful developments
Evolutionary signatures in complex ejecta and their driven shocks
We examine interplanetary signatures of ejecta-ejecta interactions. To this end, two time intervals of inner-heliospheric (&le;1AU) observations separated by 2 solar cycles are chosen where ejecta/magnetic clouds are in the process of interacting to form complex ejecta. At the Sun, both intervals are characterized by many coronal mass ejections (CMEs) and flares. In each case, a complement of observations from various instruments on two spacecraft are examined in order to bring out the in-situ signatures of ejecta-ejecta interactions and their relation to solar observations. In the first interval (April 1979), data are shown from Helios-2 and ISEE-3, separated by ~0.33AU in radial distance and 28&deg; in heliographic longitude. In the second interval (March-April 2001), data from the SOHO and Wind probes are combined, relating effects at the Sun and their manifestations at 1AU on one of Wind's distant prograde orbits. At ~0.67AU, Helios-2 observes two individual ejecta which have merged by the time they are observed at 1AU by ISEE-3. In March 2001, two distinct Halo CMEs (H-CMEs) are observed on SOHO on 28-29 March approaching each other with a relative speed of 500kms<sup>-1</sup> within 30 solar radii. In order to isolate signatures of ejecta-ejecta interactions, the two event intervals are compared with expectations for pristine (isolated) ejecta near the last solar minimum, extensive observations on which were given by Berdichevsky et al. (2002). The observations from these two event sequences are then intercompared. In both event sequences, coalescence/merging was accompanied by the following signatures: heating of the plasma, acceleration of the leading ejecta and deceleration of the trailing ejecta, compressed field and plasma in the leading ejecta, disappearance of shocks and the strengthening of shocks driven by the accelerated ejecta. A search for reconnection signatures at the interface between the two ejecta in the March 2001 event was inconclusive because the measured changes in the plasma velocity tangential to the interface (&Delta;&nu;<sub>t</sub>) were not correlated with &Delta;(<i>B<sub>t</sub></i> /&rho;). This was possibly due to lack of sufficient magnetic shear across the interface. The ejecta mergers altered interplanetary parameters considerably, leading to contrasting geoeffects despite broadly similar solar activity. The complex ejecta on 31&nbsp;March 2001 caused a double-dip ring current enhancement, resulting in two great storms (<i>D<sub>st</sub></i>, corrected for the effect of magnetopause currents, &lt;-450nT), while the merger on 5 April 1979 produced only a corrected <i>D<sub>st</sub></i> of ~-100nT, mainly due to effects of magnetopause currents
Bioactive flavanones from Luma chequen
A bioassay-guided chemical study of a methanolic extract of fresh leaves of Luma chequen led to the isolation of lumaflavanones A (1), B (2) and C (3) whose structures are proposed on the basis of NMR spectroscopic data. The structure of lumaflavanone A was confirmed by X-ray analysis. Antifeedant (Spodoptera littoralis), brine shrimp (Artemia salina) and fungistatic (Botrytis cinerea) bioassays showed that while 3 was the most active in the first two assays the mixture of 1 and 2 was more effective as a fungistatic
Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections
Space weather refers to dynamic conditions on the Sun and in the space
environment of the Earth, which are often driven by solar eruptions and their
subsequent interplanetary disturbances. It has been unclear how an extreme
space weather storm forms and how severe it can be. Here we report and
investigate an extreme event with multi-point remote-sensing and in-situ
observations. The formation of the extreme storm showed striking novel
features. We suggest that the in-transit interaction between two closely
launched coronal mass ejections resulted in the extreme enhancement of the
ejecta magnetic field observed near 1 AU at STEREO A. The fast transit to
STEREO A (in only 18.6 hours), or the unusually weak deceleration of the event,
was caused by the preconditioning of the upstream solar wind by an earlier
solar eruption. These results provide a new view crucial to solar physics and
space weather as to how an extreme space weather event can arise from a
combination of solar eruptions.Comment: 23 pages, 7 figure
Kilohertz QPOs in Neutron Star Binaries modeled as Keplerian Oscillations in a Rotating Frame of Reference
Since the discovery of kHz quasi-periodic oscillations (QPO) in neutron star
binaries, the difference between peak frequencies of two modes in the upper
part of the spectrum, i.e. Delta (omega)=omega_h-omega_K has been studied
extensively. The idea that the difference Delta(omega) is constant and (as a
beat frequency) is related to the rotational frequency of the neutron star has
been tested previously. The observed decrease of Delta(omega) when omega_h and
omega_k increase has weakened the beat frequency interpretation. We put forward
a different paradigm: a Keplerian oscillator under the influence of the
Coriolis force. For such an oscillator, omega_h and the assumed Keplerian
frequency omega_k hold an upper hybrid frequency relation:
omega^2_h-omega^2_K=4*Omega^2, where Omega is the rotational frequency of the
star's magnetosphere near the equatorial plane. For three sources (Sco X-1, 4U
1608-52 and 4U 1702-429), we demonstrate that the solid body rotation
Omega=Omega_0=const. is a good first order approximation. Within the second
order approximation, the slow variation of Omega as a function of omega_K
reveals the structure of the magnetospheric differential rotation. For Sco X-1,
the QPO have frequencies approximately 45 and 90 Hz which we interpret as the
1st and 2nd harmonics of the lower branch of the Keplerian oscillations for the
rotator with vector Omega not aligned with the normal of the disk: omega_L/2
pi=(Omega/pi)(omega_K/omega_h)sin(delta) where delta is the angle between
vector Omega and the vector normal to the disk.Comment: 13 pages, 3 figures, accepted for publications in ApJ Letter
Instability of Extremal Relativistic Charged Spheres
With the question, ``Can relativistic charged spheres form extremal black
holes?" in mind, we investigate the properties of such spheres from a classical
point of view. The investigation is carried out numerically by integrating the
Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding
interior Reissner-Nordstr\"om solutions for these objects. We consider both
constant density and adiabatic equations of state, as well as several possible
charge distributions, and examine stability by both a normal mode and an energy
analysis. In all cases, the stability limit for these spheres lies between the
extremal () limit and the black hole limit (). That is, we find
that charged spheres undergo gravitational collapse before they reach ,
suggesting that extremal Reissner-Nordtr\"om black holes produced by collapse
are ruled out. A general proof of this statement would support a strong form of
the cosmic censorship hypothesis, excluding not only stable naked
singularities, but stable extremal black holes. The numerical results also
indicate that although the interior mass-energy obeys the usual stability limit for the Schwarzschild interior solution, the gravitational
mass does not. Indeed, the stability limit approaches as .
In the Appendix we also argue that Hawking radiation will not lead to an
extremal Reissner-Nordstr\"om black hole. All our results are consistent with
the third law of black hole dynamics, as currently understood
2,3-Dimethoxy-10-oxostrychnidinium 2-(2,4,6-trinitroanilino)benzoate monohydrate: a 1:1 proton-transfer salt of brucine with o-picraminobenzoic acid
In the structure of the 1:1 proton-transfer compound of brucine with 2-(2,4,6-trinitroanilino)benzoic acid C23H27N2O4+ . C13H7N4O8- . H~2~O, the brucinium cations form the classic undulating ribbon substructures through overlapping head-to-tail interactions while the anions and the three related partial water molecules of solvation (having occupancies of 0.73, 0.17 and 0.10) occupy the interstitial regions of the structure. The cations are linked to the anions directly through N-H...O(carboxyl) hydrogen bonds and indirectly by the three water molecules which form similar conjoint cyclic bridging units [graph set R2/4(8)] through O-H...O(carbonyl) and O(carboxyl) hydrogen bonds, giving a two-dimensional layered structure. Within the anion, intramolecular N-H...O(carboxyl) and N H...O(nitro) hydrogen bonds result in the benzoate and picrate rings being rotated slightly out of coplanarity inter-ring dihedral angle 32.50(14)\%]. This work provides another example of the molecular selectivity of brucine in forming stable crystal structures and also represents the first reported structure of any form of the guest compound 2-(2,4,6-trinitroanilino)benzoic acid
- …
