312 research outputs found
Modeling and Analysis of Power Processing Systems
The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems
Application of an Equilibrium Vaporization Model to the Ablation of Chondritic and Achondritic Meteoroids
We modeled equilibrium vaporization of chondritic and achondritic materials
using the MAGMA code. We calculated both instantaneous and integrated element
abundances of Na, Mg, Ca, Al, Fe, Si, Ti, and K in chondritic and achondritic
meteors. Our results are qualitatively consistent with observations of meteor
spectra.Comment: 8 pages, 4 figures; in press, Earth, Moon, and Planets, Meteoroids
2004 conference proceeding
Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres
We present a comprehensive description of the theory and practice of opacity
calculations from the infrared to the ultraviolet needed to generate models of
the atmospheres of brown dwarfs and extrasolar giant planets. Methods for using
existing line lists and spectroscopic databases in disparate formats are
presented and plots of the resulting absorptive opacities versus wavelength for
the most important molecules and atoms at representative temperature/pressure
points are provided. Electronic, ro-vibrational, bound-free, bound-bound,
free-free, and collision-induced transitions and monochromatic opacities are
derived, discussed, and analyzed. The species addressed include the alkali
metals, iron, heavy metal oxides, metal hydrides, , , , ,
, , , and representative grains. [Abridged]Comment: 28 pages of text, plus 22 figures, accepted to the Astrophysical
Journal Supplement Series, replaced with more compact emulateapj versio
Spectroscopic Detection of Carbon Monoxide in Two Late-type T Dwarfs
M band spectra of two late-type T dwarfs, 2MASS J09373487+2931409, and Gliese
570D, confirm evidence from photometry that photospheric CO is present at
abundance levels far in excess of those predicted from chemical equilibrium.
These new and unambiguous detections of CO, together with an earlier
spectroscopic detection of CO in Gliese 229B and existing M band photometry of
a large selection of T dwarfs, suggest that vertical mixing in the photosphere
drives the CO abundance out of chemical equilibrium and is a common, and likely
universal feature of mid-to-late type T dwarfs. The M band spectra allow
determinations of the time scale of vertical mixing in the atmosphere of each
object, the first such measurements of this important parameter in late T
dwarfs. A detailed analysis of the spectral energy distribution of 2MASS
J09373487+2931409 results in the following values for metallicity, temperature,
surface gravity, and luminosity: [M/H]~-0.3, T_eff=925-975K, log g=5.20-5.47,
log L/L_sun=-5.308 +/- 0.027. The age is 3-10 Gyr and the mass is in the range
45-69 M_Jup.Comment: 36 pages incl. 12 figures and 3 tables, accepted by Ap
Origin of volatiles in the Main Belt
We propose a scenario for the formation of the Main Belt in which asteroids
incorporated icy particles formed in the outer Solar Nebula. We calculate the
composition of icy planetesimals formed beyond a heliocentric distance of 5 AU
in the nebula by assuming that the abundances of all elements, in particular
that of oxygen, are solar. As a result, we show that ices formed in the outer
Solar Nebula are composed of a mix of clathrate hydrates, hydrates formed above
50 K and pure condensates produced at lower temperatures. We then consider the
inward migration of solids initially produced in the outer Solar Nebula and
show that a significant fraction may have drifted to the current position of
the Main Belt without encountering temperature and pressure conditions high
enough to vaporize the ices they contain. We propose that, through the
detection and identification of initially buried ices revealed by recent
impacts on the surfaces of asteroids, it could be possible to infer the
thermodynamic conditions that were present within the Solar Nebula during the
accretion of these bodies, and during the inward migration of icy
planetesimals. We also investigate the potential influence that the
incorporation of ices in asteroids may have on their porosities and densities.
In particular, we show how the presence of ices reduces the value of the bulk
density of a given body, and consequently modifies its macro-porosity from that
which would be expected from a given taxonomic type.Comment: Accepted for publication in MNRA
Scientific Preparations for Lunar Exploration with the European Lunar Lander
This paper discusses the scientific objectives for the ESA Lunar Lander
Mission, which emphasise human exploration preparatory science and introduces
the model scientific payload considered as part of the on-going mission
studies, in advance of a formal instrument selection.Comment: Accepted for Publication in Planetary and Space Science 51 pages, 8
figures, 1 tabl
A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres
The atmospheres of substellar objects contain clouds of oxides, iron,
silicates, and other refractory condensates. Water clouds are expected in the
coolest objects. The opacity of these `dust' clouds strongly affects both the
atmospheric temperature-pressure profile and the emergent flux. Thus any
attempt to model the spectra of these atmospheres must incorporate a cloud
model. However the diversity of cloud models in atmospheric simulations is
large and it is not always clear how the underlying physics of the various
models compare. Likewise the observational consequences of different modeling
approaches can be masked by other model differences, making objective
comparisons challenging. In order to clarify the current state of the modeling
approaches, this paper compares five different cloud models in two sets of
tests. Test case 1 tests the dust cloud models for a prescribed L, L--T, and
T-dwarf atmospheric (temperature T, pressure p, convective velocity
vconv)-structures. Test case 2 compares complete model atmosphere results for
given (effective temperature Teff, surface gravity log g). All models agree on
the global cloud structure but differ in opacity-relevant details like grain
size, amount of dust, dust and gas-phase composition. Comparisons of synthetic
photometric fluxes translate into an modelling uncertainty in apparent
magnitudes for our L-dwarf (T-dwarf) test case of 0.25 < \Delta m < 0.875 (0.1
< \Delta m M 1.375) taking into account the 2MASS, the UKIRT WFCAM, the Spitzer
IRAC, and VLT VISIR filters with UKIRT WFCAM being the most challenging for the
models. (abr.)Comment: 22 pages, 17 figures, MNRAS 2008, accepted, (minor grammar/typo
corrections
Novel Experimental Simulations of the Atmospheric Injection of Meteoric Metals
A newly developed laboratory, Meteoric Ablation Simulator (MASI), is used to test model predictions of the atmospheric ablation of interplanetary dust particles (IDPs) with experimental Na, Fe, and Ca vaporization profiles. MASI is the first laboratory setup capable of performing time-resolved atmospheric ablation simulations, by means of precision resistive heating and atomic laser-induced fluorescence detection. Experiments using meteoritic IDP analogues show that at least three mineral phases (Na-rich plagioclase, metal sulfide, and Mg-rich silicate) are required to explain the observed appearance temperatures of the vaporized elements. Low melting temperatures of Na-rich plagioclase and metal sulfide, compared to silicate grains, preclude equilibration of all the elemental constituents in a single melt. The phase-change process of distinct mineral components determines the way in which Na and Fe evaporate. Ca evaporation is dependent on particle size and on the initial composition of the molten silicate. Measured vaporized fractions of Na, Fe, and Ca as a function of particle size and speed confirm differential ablation (i.e., the most volatile elements such as Na ablate first, followed by the main constituents Fe, Mg, and Si, and finally the most refractory elements such as Ca). The Chemical Ablation Model (CABMOD) provides a reasonable approximation to this effect based on chemical fractionation of a molten silicate in thermodynamic equilibrium, even though the compositional and geometric description of IDPs is simplistic. Improvements in the model are required in order to better reproduce the specific shape of the elemental ablation profiles
Solubility of Rock in Steam Atmospheres of Planets
Extensive experimental studies show that all major rock-forming elements (e.g., Si, Mg, Fe, Ca, Al, Na, K) dissolve in steam to a greater or lesser extent. We use these results to compute chemical equilibrium abundances of rocky-element-bearing gases in steam atmospheres equilibrated with silicate magma oceans. Rocky elements partition into steam atmospheres as volatile hydroxide gases (e.g., Si(OH)4, Mg(OH)2, Fe(OH)2, Ni(OH)2, Al(OH)3, Ca(OH)2, NaOH, KOH) and via reaction with HF and HCl as volatile halide gases (e.g., NaCl, KCl, CaFOH, CaClOH, FAl(OH)2) in much larger amounts than expected from their vapor pressures over volatile-free solid or molten rock at high temperatures expected for steam atmospheres on the early Earth and hot rocky exoplanets. We quantitatively compute the extent of fractional vaporization by defining gas/magma distribution coefficients and show that Earth's subsolar Si/Mg ratio may be due to loss of a primordial steam atmosphere. We conclude that hot rocky exoplanets that are undergoing or have undergone escape of steam-bearing atmospheres may experience fractional vaporization and loss of Si, Mg, Fe, Ni, Al, Ca, Na, and K. This loss can modify their bulk composition, density, heat balance, and interior structure
Effects of the fatty acid amide hydrolase inhibitor URB597 on coping behavior under challenging conditions in mice
RATIONALE: Recent evidence suggests that in addition to controlling emotional behavior in general, endocannabinoid signaling is engaged in shaping behavioral responses to challenges. This important function of endocannabinoids is still poorly understood. OBJECTIVES: Here we investigated the impact of blockade of fatty acid amide hydrolase (FAAH), the degrading enzyme of anandamide on behavioral responses induced by challenges of different intensity. METHODS: Mice treated with FAAH inhibitor URB597 were either manually restrained on their backs (back test) or received foot-shocks. RESULTS: The behavior of mice showed bimodal distribution in the back test: they either predominantly showed escape attempts or equally distributed time between passivity and escape. URB597 increased escapes in animals with low escape scores. No effects were noticed in mice showing high escape scores, which is likely due to a ceiling effect. We hypothesized that stronger stressors would wash out individual differences in coping; therefore, we exposed mice to foot-shocks that decreased locomotion and increased freezing in all mice. URB597 ameliorated both responses. The re-exposure of mice to the shock cage 14 days later without delivering shocks or treatment was followed by reduced and fragmented sleep as shown by electrophysiological recordings. Surprisingly, sleep was more disturbed after the reminder than after shocks in rats receiving vehicle before foot-shocks. These reminder-induced disturbances were abolished by URB597 administered before shocks. CONCLUSIONS: These findings suggest that FAAH blockade has an important role in the selection of behavioral responses under challenging conditions and-judging from its long-term effects-that it influences the cognitive appraisal of the challenge
- …
