831 research outputs found
Airloads research study. Volume 2: Airload coefficients derived from wind tunnel data
The development of B-1 aircraft rigid wind tunnel data for use in subsequent tasks of the Airloads Research Study is described. Data from the Rockwell International external structural loads data bank were used to generate coefficients of rigid airload shear, bending moment, and torsion at specific component reference stations or both symmetric and asymmetric loadings. Component stations include the movable wing, horizontal and vertical stabilizers, and forward and aft fuselages. The coefficient data cover a Mach number range from 0.7 to 2.2 for a wing sweep position of 67.5 degree
Airloads research study. Volume 1: Flight test loads acquisition
The acquisition of B-1 aircraft flight loads data for use in subsequent tasks of the Airloads Research Study is described. The basic intent is to utilize data acquired during B-1 aircraft tests, analyze these data beyond the scope of Air Force requirements, and prepare research reports that will add to the technology base for future large flexible aircraft. Flight test data obtained during the airloads survey program included condition-describing parameters, surface pressures, strain gage outputs, and loads derived from pressure and strain gauges. Descriptions of the instrumentation, data processing, and flight load survey program are included. Data from windup-turn and steady yaw maneuvers cover a Mach number range from 0.7 to 2.0 for a wing sweep position of 67.5 deg
Aerodynamic and acoustic behavior of a YF-12 inlet at static conditions
An aeroacoustic test program to determine the cause of YF-12 inlet noise suppression was performed with a YF-12 aircraft at ground static conditions. Data obtained over a wide range of engine speeds and inlet configurations are reported. Acoustic measurements were made in the far field and aerodynamic and acoustic measurements were made inside the inlet. The J-58 test engine was removed from the aircraft and tested separately with a bellmouth inlet. The far field noise level was significantly lower for the YF-12 inlet than for the bellmouth inlet at engine speeds above 5500 rpm. There was no evidence that noise suppression was caused by flow choking. Multiple pure tones were reduced and the spectral peak near the blade passing frequency disappeared in the region of the spike support struts at engine speeds between 6000 and 6600 rpm
Exploring efficacy in personal constraint negotiation: an ethnography of mountaineering tourists
Limited work has explored the relationship between efficacy and personal constraint negotiation for adventure tourists, yet efficacy is pivotal to successful activity participation as it influences people’s perceived ability to cope with constraints, and their decision to use negotiation strategies. This paper explores these themes with participants of a commercially organised mountaineering expedition. Phenomenology-based ethnography was adopted to appreciate the social and cultural mountaineering setting from an emic perspective. Ethnography is already being used to understand adventure participation, yet there is considerable scope to employ it further through researchers immersing themselves into the experience. The findings capture the interaction between the ethnographer and the group members, and provide an embodied account using their lived experiences. Findings reveal that personal mountaineering skills, personal fitness, altitude sickness and fatigue were the four key types of personal constraint. Self-efficacy, negotiation-efficacy and other factors, such as hardiness and motivation, influenced the effectiveness of negotiation strategies. Training, rest days, personal health, and positive self-talk were negotiation strategies. A conceptual model illustrates these results and demonstrates the interplay between efficacy and the personal constraint negotiation journey for led mountaineers
Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part I: The formation of the -network
Semiconductor glasses exhibit many unique optical and electronic anomalies.
We have put forth a semi-phenomenological scenario (J. Chem. Phys. 132, 044508
(2010)) in which several of these anomalies arise from deep midgap electronic
states residing on high-strain regions intrinsic to the activated transport
above the glass transition. Here we demonstrate at the molecular level how this
scenario is realized in an important class of semiconductor glasses, namely
chalcogen and pnictogen containing alloys. Both the glass itself and the
intrinsic electronic midgap states emerge as a result of the formation of a
network composed of -bonded atomic -orbitals that are only weakly
hybridized. Despite a large number of weak bonds, these -networks are
stable with respect to competing types of bonding, while exhibiting a high
degree of structural degeneracy. The stability is rationalized with the help of
a hereby proposed structural model, by which -networks are
symmetry-broken and distorted versions of a high symmetry structure. The latter
structure exhibits exact octahedral coordination and is fully
covalently-bonded. The present approach provides a microscopic route to a fully
consistent description of the electronic and structural excitations in vitreous
semiconductors.Comment: 22 pages, 17 figures, revised version, final version to appear in J.
Chem. Phy
Cohesion, team mental models, and collective efficacy: Towards an integrated framework of team dynamics in sport
A nomological network on team dynamics in sports consisting of a multi-framework perspective is introduced and tested. The aim was to explore the interrelationship among cohesion, team mental models (TMM), collective-efficacy (CE), and perceived performance potential (PPP). Three hundred and forty college-aged soccer players representing 17 different teams (8 female and 9 male) participated in the study. They responded to surveys on team cohesion, TMM, CE and PPP. Results are congruent with the theoretical conceptualization of a parsimonious view of team dynamics in sports. Specifically, cohesion was found to be an exogenous variable predicting both TMM and CE beliefs. TMM and CE were correlated and predicted PPP, which in turn accounted for 59% of the variance of objective performance scores as measured by teams’ season record. From a theoretical standpoint, findings resulted in a parsimonious view of team dynamics, which may represent an initial step towards clarifying the epistemological roots and nomological network of various team-level properties. From an applied standpoint, results suggest that team expertise starts with the establishment of team cohesion. Following the establishment of cohesiveness, teammates are able to advance team-related schemas and a collective sense of confidence. Limitations and key directions for future research are outlined
The making of expert performers at Cirque du Soleil and the National Circus School: A performance enhancement outlook
In this paper, an applied analysis of the psychological processes and skills necessary for performance artists to excel in contemporary circus is presented. This analysis is based on applied experience at Cirque du Soleil and the National Circus School, leading contemporary circus programs in the world. The importance of learning the rules of the circus domain, transferring motor skills to the circus environment, and developing an artistic identity and mindful mind-set are discussed. Furthermore, general and discipline-specific performance pressures are identified and discussed in light of current performance enhancement techniques
The electronic structure of amorphous silica: A numerical study
We present a computational study of the electronic properties of amorphous
SiO2. The ionic configurations used are the ones generated by an earlier
molecular dynamics simulations in which the system was cooled with different
cooling rates from the liquid state to a glass, thus giving access to
glass-like configurations with different degrees of disorder [Phys. Rev. B 54,
15808 (1996)]. The electronic structure is described by a tight-binding
Hamiltonian. We study the influence of the degree of disorder on the density of
states, the localization properties, the optical absorption, the nature of
defects within the mobility gap, and on the fluctuations of the Madelung
potential, where the disorder manifests itself most prominently. The
experimentally observed mismatch between a photoconductivity threshold of 9 eV
and the onset of the optical absorption around 7 eV is interpreted by the
picture of eigenstates localized by potential energy fluctuations in a mobility
gap of approximately 9 eV and a density of states that exhibits valence and
conduction band tails which are, even in the absence of defects, deeply located
within the former band gap.Comment: 21 pages of Latex, 5 eps figure
Blended E-health module on return to work embedded in collaborative occupational health care for common mental disorders: Design of a cluster randomized controlled trial
Background: Common mental disorders (CMD) have a major impact on both society and individual workers, so return to work (RTW) is an important issue. In The Netherlands, the occupational physician plays a central role in the guidance of sick-listed workers with respect to RTW. Evidence-based guidelines are available, but seem not to be effective in improving RTW in people with CMD. An intervention supporting the occupational physician in guidance of sick-listed workers combined with specific guidance regarding RTW is needed. A blended E-health module embedded in collaborative occupational health care is now available, and comprises a decision aid supporting the occupational physician and an E-health module, Return@Work, to support sick-listed workers in the RTW process. The cost-effectiveness of this intervention will be evaluated in this study and compared with that of care as usual. Methods: This study is a two-armed cluster randomized controlled trial, with randomization done at the level of occupational physicians. Two hundred workers with CMD on sickness absence for 4-26 weeks will be included in the study. Workers whose occupational physician is allocated to the intervention group will receive the collaborative occupational health care intervention. Occupational physicians allocated to the care as usual group will give conventional sickness guidance. Follow-up assessments will be done at 3, 6
- …
