601 research outputs found
Martian Magma Evolution from Olivine-Hosted Melt Inclusions in Shergottites Using MELTS Models
Shergottites, the largest martian meteorite group, come from at least two geochemically different source reservoirs i.e. incompatible trace element (ITE)-depleted and enriched. The depleted shergottites are thought to be derived from an ITE-depleted mantle reservoir, while enriched shergottites are thought to be derived from an ITE-enriched mantle reservoir that represents late stage residual melt from a magma ocean or interaction with martian crust. Moreover, the martian crust is distinct from shergottites, by being highly oxidized, distinctly ITE-enriched, and older. The link between the crust and shergottite compositions is poorly understood. Here we model shergottite differentiation to resolve the origin of enriched shergottites and why the bulk martian crust is compositionally distinct from shergottites. Early formed olivine-hosted melt inclusions can provide primary melt composition from which the parental magma had crystallized and also information at different stages of crystallization during parent magma differentiation that leads to shergottite magma evolution as well as crustal contribution assessment. We analyzed olivine-hosted melt inclusions of two enriched poikilitic shergottites for their major, minor and trace element concentrations using electron microprobe and laser ablation ICP-MS. We corrected the melt inclusion compositions for post-entrapment re-equilibration with their host olivine. To comprehend the crystallization sequence of these rocks and whether the melt entrapment is consistent with the crystallization, we use MELTS models for equilibrium and fractional crystallization. The results of these models suggest that all the melts were trapped in a closed system progressive crystallization at 1150-1210 C within 1 kbar to 1 bar pressure that is equivalent to <8.5 km, implying melt entrapment without any additional exogenous materials
Recommended from our members
Hepatic heparan sulfate is a master regulator of hepcidin expression and iron homeostasis in human hepatocytes and mice.
Hepcidin is a liver-derived peptide hormone that controls systemic iron homeostasis. Its expression is regulated by the bone morphogenetic protein 6 (BMP6)/SMAD1/5/8 pathway and by the proinflammatory cytokine interleukin 6 (IL6). Proteoglycans that function as receptors of these signaling proteins in the liver are commonly decorated by heparan sulfate, but the potential role of hepatic heparan sulfate in hepcidin expression and iron homeostasis is unclear. Here, we show that modulation of hepatic heparan sulfate significantly alters hepcidin expression and iron metabolism both in vitro and in vivo Specifically, enzymatic removal of heparan sulfate from primary human hepatocytes, CRISPR/Cas9 manipulation of heparan sulfate biosynthesis in human hepatoma cells, or pharmacological manipulation of heparan sulfate-protein interactions using sodium chlorate or surfen dramatically reduced baseline and BMP6/SMAD1/5/8-dependent hepcidin expression. Moreover inactivation of the heparan sulfate biosynthetic gene N-deacetylase and N-sulfotransferase 1 (Ndst1) in murine hepatocytes (Ndst1 f/f AlbCre +) reduced hepatic hepcidin expression and caused a redistribution of systemic iron, leading to iron accumulation in the liver and serum of mice. Manipulation of heparan sulfate had a similar effect on IL6-dependent hepcidin expression in vitro and suppressed IL6-mediated iron redistribution induced by lipopolysaccharide in vivo These results provide compelling evidence that hepatocyte heparan sulfate plays a key role in regulating hepcidin expression and iron homeostasis in mice and in human hepatocytes
Trace Element Abundances of Olivine-Hosted Melt Inclusions in Shergottites Northwest Africa 7397 and Robert Massif 04262
Olivine-hosted melt inclusions (MIs) may retain trapped parent magma compositions as well as record progressive differentiation while magmas crystallize and ascend towards the surface [1,2 and references therein]. Major element compositions of the MIs, especially Fe and Mg, can be affected by post-entrapment re-equilibration with their host olivine [1,2]. Therefore, Fe/Mg ratio correction is required to obtain MI bulk compositions following equilibrium with their host olivine. Partition coefficients of most of the trace elements in olivine are very low (i.e. DOL/melt<0.001). Thus, ratios of trace elements of olivine-hosted MIs are unlikely to be affected by post-entrapment re-equilibration and no correction is necessary [2]. Hence, tracking trace element behavior in MIs may constrain the composition of the parent magma and its evolution yielding insights on magma differentiation of shergottites. However, analyzing MIs for chemical compositions is a challenging task due to their low abundances and small sizes. Using a highly sensitive and precise micro-beam technique is essential to examine olivine-hosted MIs in order to measure trace element abundances. For this purpose, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an excellent tool due to its wide range of laser spot sizes (1-150 m), ability to obtain raster analysis (several mm2) and lower detection limits (0.1 ppb) [3]
Basaltic Shergottite NWA 856: Differentiation of a Martian Magma
NWA 856 or Djel Ibone, is a basaltic shergottite discovered as a single stone of 320 g in South Morocco in April, 2001. This meteorite is fresh, i.e. shows minimal terrestrial weathering for a desert find. No shergottite discovered in North Africa can be paired with NWA 856. The purpose of this study is to constrain its crystallization history using textural observations, crystallization sequence modeling and in-situ trace element analysis in order to understand differentiation in shergottite magmatic systems
BRYNTRN: A baryon transport model
The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes
Spectral Line-by-Line Pulse Shaping of an On-Chip Microresonator Frequency Comb
We report, for the first time to the best of our knowledge, spectral phase
characterization and line-by-line pulse shaping of an optical frequency comb
generated by nonlinear wave mixing in a microring resonator. Through
programmable pulse shaping the comb is compressed into a train of
near-transform-limited pulses of \approx 300 fs duration (intensity full width
half maximum) at 595 GHz repetition rate. An additional, simple example of
optical arbitrary waveform generation is presented. The ability to characterize
and then stably compress the frequency comb provides new data on the stability
of the spectral phase and suggests that random relative frequency shifts due to
uncorrelated variations of frequency dependent phase are at or below the 100
microHertz level.Comment: 18 pages, 4 figure
Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing
In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness
Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA
Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart
Whole genome sequencing reveals high clonal diversity of Escherichia coli isolated from patients in a tertiary care hospital in Moshi, Tanzania
Abstract Background Limited information regarding the clonality of circulating E. coli strains in tertiary care hospitals in low and middle-income countries is available. The purpose of this study was to determine the serotypes, antimicrobial resistance and virulence genes. Further, we carried out a phylogenetic tree reconstruction to determine relatedness of E. coli isolated from patients in a tertiary care hospital in Tanzania. Methods E. coli isolates from inpatients admitted at Kilimanjaro Christian Medical Centre between August 2013 and August 2015 were fully genome-sequenced at KCMC hospital. Sequence analysis was done for identification of resistance genes, Multi-Locus Sequence Typing, serotyping, and virulence genes. Phylogeny reconstruction using CSI Phylogeny was done to ascertain E. coli relatedness. Stata 13 (College Station, Texas 77,845 USA) was used to determine Cohen’s kappa coefficient of agreement between the phenotypically tested and whole genome sequence predicted antimicrobial resistance. Results Out of 38 E. coli isolates, 21 different sequence types (ST) were observed. Eight (21.1%) isolates belonged to ST131; of which 7 (87.5.%) were serotype O25:H4. Ten (18.4%) isolates belonged to ST10 clonal complex; of these, four (40.0%) were ST617 with serotype O89:H10. Twenty-eight (73.7%) isolates carried genes encoding beta-lactam resistance enzymes. On average, agreement across all drugs tested was 83.9%. Trimethoprim/sulphamethoxazole (co-trimoxazole) showed moderate agreement: 45.8%, kappa =15% and p = 0.08. Amoxicillin-clavulanate showed strongest agreement: 87.5%, kappa = 74% and p = 0.0001. Twenty-two (57.9%) isolates carried virulence factors for host cells adherence and 25 (65.7%) for factors that promote E. coli immune evasion by increasing survival in serum. The phylogeny analysis showed that ST131 clustering close together whereas ST10 clonal complex had a very clear segregation of the ST617 and a mix of the rest STs. Conclusion There is a high diversity of E. coli isolated from patients admitted to a tertiary care hospital in Tanzania. This underscores the necessity to routinely screen all bacterial isolates of clinical importance in tertiary health care facilities. WGS use for laboratory-based surveillance can be an effective early warning system for emerging pathogens and resistance mechanisms in LMICs
MAJOR DETERMINANTS ON THE PROFITABILITY OF SRI LANKAN LOCAL COMMERCIAL BANKS
The main purpose of this study is to investigate the relationship between bank-specific factors and the profitability of local commercial banks in Sri Lanka. Thus, finding the main internal characteristics for achieving higher profitability. In this research, OLS regression analysis is used to examine the relationship between bank-specific characteristics and bank’s profitability for a sample of 11 major Sri Lankan local banks during 12 years period from 2006 to 2017. The findings reveal that assets base and size of branch network are the main determinants of bank’s profitability, by showing a significant relationship with all measures of profitability. Net profits of banks show a significant relationship with size of branch networks and total assets, but insignificant with deposit interest ratio. However, loan interest ratio and deposit interest ratio together have a significant effect on net interest margin thus leading an impact on banks’ profitability. This study is an extension and a country application to the research carried-out by Kassem N.M. & Sakr A (2018) on Commercial Banks in Egypt. JEL: G20; G21 Article visualizations
- …
