3,231 research outputs found

    The Evolution of Helium and Hydrogen Ionization Corrections as HII Regions Age

    Get PDF
    Helium and hydrogen recombination lines observed in low-metallicity, extragalactic, HII regions provide the data used to infer the primordial helium mass fraction, Y_P. In deriving abundances from observations, the correction for unseen neutral helium or hydrogen is usually assumed to be absent; i.e., the ionization correction factor is taken to be unity (icf = 1). In a previous paper (VGS), we revisited the question of the icf, confirming a "reverse" ionization correction: icf < 1. In VGS the icf was calculated using more nearly realistic models of inhomogeneous HII regions, suggesting that the published values of Y_P needed to be reduced by an amount of order 0.003. As star clusters age, their stellar spectra evolve and so, too, will their icfs. Here the evolution of the icf is studied, along with that of two, alternate, measures of the "hardness" of the radiation spectrum. The differences between the icf for radiation-bounded and matter-bounded models are also explored, along with the effect on the icf of the He/H ratio (since He and H compete for some of the same ionizing photons). Particular attention is paid to the amount of doubly-ionized helium predicted, leading us to suggest that observations of, or bounds to, He++ may help to discriminate among models of HII regions ionized by starbursts of different ages and spectra. We apply our analysis to the Izotov & Thuan (IT) data set utilizing the radiation softness parameter, the [OIII]/[OI] ratio, and the presence or absence of He++ to find 0.95 < icf < 0.99. This suggests that the IT estimate of the primordial helium abundance should be reduced by Delta-Y = 0.006 +- 0.002, from 0.244 +- 0.002 to 0.238 +- 0.003.Comment: 27 double-spaced pages, 11 figures, 5 equations; revised to match the version accepted for publication in the Ap

    The Electron Scattering Region in Seyfert Nuclei

    Get PDF
    The electron scattering region (ESR) is one of important ingredients in Seyfert nuclei because it makes possible to observe the hidden broad line region (hereafter HBLR) in some type 2 Seyfert nuclei (hereafter S2s). However, little is known about its physical and geometrical properties. Using the number ratio of S2s with and without HBLR, we investigate statistically where the ESR is in Seyfert nuclei. Our analysis suggests that the ESR is located at radius between \sim 0.01 pc and \sim 0.1 pc from the central engine. We also discuss a possible origin of the ESR briefly.Comment: 5 pages and 1 figure. The Astrophysical Journal (Letters), in pres

    Modelling and analysis of time dependent processes in a chemically reactive mixture

    Get PDF
    In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat conducting and non-viscous mixture described by an Eulerian set of evolution equations. The model is derived from the kinetic theory in a hydrodynamic regime of a fast chemical reaction. The reactive source terms are explicitly computed from the kinetic theory and are built in themodel in a proper way. For both time-dependent problems, we first derive the appropriate dispersion relation, which retains the main effects of the chemical process, and then investigate the influence of the chemical reaction on the properties of interest in the problems studied here. We complete our study by developing a rather detailed analysis using the Hydrogen–Chlorine system as reference. Several numerical computations are included illustrating the behavior of the phase velocity and attenuation coefficient in a low-frequency regime and describing the spectrum of the eigenmodes in the small wavenumber limit.The paper is partially supported by the Research Centre of Mathematics of the University of Minho, with the Portuguese Funds from the Foundation for Science and Technology (FCT) through the Project UID/MAT/00013/2013. We wish to thank the anonymous Referees for their valuable comments and suggestions that helped us to improve the paper.info:eu-repo/semantics/publishedVersio

    Parsec-Scale Images of Flat-Spectrum Radio Sources in Seyfert Galaxies

    Get PDF
    We present high angular resolution (~2 mas) radio continuum observations of five Seyfert galaxies with flat-spectrum radio nuclei, using the VLBA at 8.4 GHz. The goal of the project is to test whether these flat-spectrum cores represent thermal emission from the accretion disk, as inferred previously by Gallimore et al. for NGC 1068, or non-thermal, synchrotron self-absorbed emission, which is believed to be responsible for more powerful, flat-spectrum nuclear sources in radio galaxies and quasars. In four sources (T0109-383, NGC 2110, NGC 5252, Mrk 926), the nuclear source is detected but unresolved by the VLBA, indicating brightness temperatures in excess of 10^8 K and sizes, on average, less than 1 pc. We argue that the radio emission is non-thermal and synchrotron self-absorbed in these galaxies, but Doppler boosting by relativistic outflows is not required. Synchrotron self-absorption brightness temperatures suggest intrinsic source sizes smaller than ~0.05-0.2 pc, for these four galaxies, the smallest of which corresponds to a light-crossing time of ~60 light days or 10^4 gravitational radii for a 10^8 M_sun black hole. We also present MERLIN and VLA observations of NGC 4388, which was undetected by the VLBA, and argue that the observed, flat-spectrum, nuclear radio emission in this galaxy represents optically thin, free-free radiation from dense thermal gas on scales ~0.4 to a few pc. It is notable that the two Seyfert galaxies with detected thermal nuclear radio emission (NGC 1068 and NGC 4388) both have large X-ray absorbing columns, suggesting that columns in excess of \~10^{24} cm^{-2} are needed for such disks to be detectable. (Abridged)Comment: 36 pages including 5 tables and 4 figures; accepted for publication in Ap

    Critical change in the Fermi surface of iron arsenic superconductors at the onset of superconductivity

    Full text link
    The phase diagram of a correlated material is the result of a complex interplay between several degrees of freedom, providing a map of the material's behavior. One can understand (and ultimately control) the material's ground state by associating features and regions of the phase diagram, with specific physical events or underlying quantum mechanical properties. The phase diagram of the newly discovered iron arsenic high temperature superconductors is particularly rich and interesting. In the AE(Fe1-xTx)2As2 class (AE being Ca, Sr, Ba, T being transition metals), the simultaneous structural/magnetic phase transition that occurs at elevated temperature in the undoped material, splits and is suppressed by carrier doping, the suppression being complete around optimal doping. A dome of superconductivity exists with apparent equal ease in the orthorhombic / antiferromagnetic (AFM) state as well as in the tetragonal state with no long range magnetic order. The question then is what determines the critical doping at which superconductivity emerges, if the AFM order is fully suppressed only at higher doping values. Here we report evidence from angle resolved photoemission spectroscopy (ARPES) that critical changes in the Fermi surface (FS) occur at the doping level that marks the onset of superconductivity. The presence of the AFM order leads to a reconstruction of the electronic structure, most significantly the appearance of the small hole pockets at the Fermi level. These hole pockets vanish, i. e. undergo a Lifshitz transition, at the onset of superconductivity. Superconductivity and magnetism are competing states in the iron arsenic superconductors. In the presence of the hole pockets superconductivity is fully suppressed, while in their absence the two states can coexist.Comment: Updated version accepted in Nature Physic

    Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products

    Get PDF
    We developed a low-cost, high-throughput microbiome profiling method that uses combinatorial sequence tags attached to PCR primers that amplify the rRNA V6 region. Amplified PCR products are sequenced using an Illumina paired-end protocol to generate millions of overlapping reads. Combinatorial sequence tagging can be used to examine hundreds of samples with far fewer primers than is required when sequence tags are incorporated at only a single end. The number of reads generated permitted saturating or near-saturating analysis of samples of the vaginal microbiome. The large number of reads al- lowed an in-depth analysis of errors, and we found that PCR-induced errors composed the vast majority of non-organism derived species variants, an ob- servation that has significant implications for sequence clustering of similar high-throughput data. We show that the short reads are sufficient to assign organisms to the genus or species level in most cases. We suggest that this method will be useful for the deep sequencing of any short nucleotide region that is taxonomically informative; these include the V3, V5 regions of the bac- terial 16S rRNA genes and the eukaryotic V9 region that is gaining popularity for sampling protist diversity.Comment: 28 pages, 13 figure

    Vibrational analysis of d-PCL(530)/siloxane based hybrids doped with two lithium salts

    Get PDF
    Published online: 22 May 2013The present study has been focused on environmentally friendly sol-gel derived electrolytes based on a di-urethane cross-linked d-PCL(530)/siloxane network (where d represents di, PCL identifies the poly(ε–caprolactone) biopolymer and 530 is the average molecular weight in g.mol-1) doped with a wide range of concentration of lithium perchlorate (LiClO4) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Fourier Transform Infrared and Raman (FT-IR and FT-Raman, respectively) spectroscopies have been applied to evaluate the extent of ionic association. Characteristic bands of the PCL(530) segments, of the urethane cross-links and of the anions have been examined to gain insight into the cation/biopolymer, cation/anion and cation/cross-link interactions. In both electrolyte systems “free” ions and contact ions have been identified. The addition of salt modifies the hydrogen-bonded array of the host matrix, causing the destruction/formation of the urethane/urethane aggregates.Fundação para a Ciência e a Tecnologia (FCT

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    The Ensemble Photometric Variability of ~25000 Quasars in the Sloan Digital Sky Survey

    Full text link
    Using a sample of over 25000 spectroscopically confirmed quasars from the Sloan Digital Sky Survey, we show how quasar variability in the rest frame optical/UV regime depends upon rest frame time lag, luminosity, rest wavelength, redshift, the presence of radio and X-ray emission, and the presence of broad absorption line systems. The time dependence of variability (the structure function) is well-fit by a single power law on timescales from days to years. There is an anti-correlation of variability amplitude with rest wavelength, and quasars are systematically bluer when brighter at all redshifts. There is a strong anti-correlation of variability with quasar luminosity. There is also a significant positive correlation of variability amplitude with redshift, indicating evolution of the quasar population or the variability mechanism. We parameterize all of these relationships. Quasars with RASS X-ray detections are significantly more variable (at optical/UV wavelengths) than those without, and radio loud quasars are marginally more variable than their radio weak counterparts. We find no significant difference in the variability of quasars with and without broad absorption line troughs. Models involving multiple discrete events or gravitational microlensing are unlikely by themselves to account for the data. So-called accretion disk instability models are promising, but more quantitative predictions are needed.Comment: 41 pages, 21 figures, AASTeX, Accepted for publication in Ap
    corecore