1,082 research outputs found
A simplified protocol for detecting two systemic bait markers (Rhodamine B and iophenoxic acid) in small mammals
We developed a method of quantifying levels of fluorescence in the whiskers of wild stoats (Mustela erminea) using fluorescence microscopy and Axiovision 3.0.6.1 software. The method allows for discrimination between natural fluorescence present in or on a whisker, and the fluorescence resulting from the ingestion of the systemic marker Rhodamine B (RB), although some visual judgement is still required. We also developed a new high performance liquid chromatography (HPLC) protocol for detecting the systemic marker iophenoxic acid (IPA) in the blood of laboratory rats (Rattus norvegicus) and wild stoats. With this method, the blood of an animal that has consumed IPA can be tested for the presence of the foreign IPA compound itself. This is a more reliable test than the previous method, which measured the raised level of natural blood protein-bound iodine correlated with IPA absorption. The quantity of blood required from animal subjects is very small (10 μl), so the testing is less intrusive and the method can be extended to smaller species. The extraction technique uses methanol, rather than acids and heavy metal salts, thereby simplifying the procedure. Recovery of IPA is quantitative, giving a highly reliable reading. In experiments on captive rats the IPA method proved successful. Of 12 positively marked carcasses, two that had not been frozen for the 24 h before blood samples were taken showed relatively lower IPA levels. The same IPA detection method, as well as the whisker analysis for RB, was applied successfully to a population of wild stoats to which both Rhodamine B and IPA were made available at bait stations. The presence of both bait markers was detectable in rats for at least 21 days and in stoats for at least 27 days
Saturation effects in the sub-Doppler spectroscopy of Cesium vapor confined in an Extremely Thin Cell
Saturation effects affecting absorption and fluorescence spectra of an atomic
vapor confined in an Extremely Thin Cell (cell thickness ) are
investigated experimentally and theoretically. The study is performed on the
line ( of and concentrates on the two
situations and , the most contrasted ones with
respect to the length dependence of the coherent Dicke narrowing. For , the Dicke-narrowed absorption profile simply broadens and
saturates in amplitude when increasing the light intensity, while for , sub-Doppler dips of reduced absorption at line-center appear on the
broad absorption profile. For a fluorescence detection at ,
saturation induces narrow dips, but only for hyperfine components undergoing a
population loss through optical pumping. These experimental results are
interpreted with the help of the various existing models, and are compared with
numerical calculations based upon a two-level modelling that considers both a
closed and an open system.Comment: 11 pages, 12 figure
Setting limits on Effective Field Theories: the case of Dark Matter
The usage of Effective Field Theories (EFT) for LHC new physics searches is
receiving increasing attention. It is thus important to clarify all the aspects
related with the applicability of the EFT formalism in the LHC environment,
where the large available energy can produce reactions that overcome the
maximal range of validity, i.e. the cutoff, of the theory. We show that this
does forbid to set rigorous limits on the EFT parameter space through a
modified version of the ordinary binned likelihood hypothesis test, which we
design and validate. Our limit-setting strategy can be carried on in its
full-fledged form by the LHC experimental collaborations, or performed
externally to the collaborations, through the Simplified Likelihood approach,
by relying on certain approximations. We apply it to the recent CMS mono-jet
analysis and derive limits on a Dark Matter (DM) EFT model. DM is selected as a
case study because the limited reach on the DM production EFT Wilson
coefficient and the structure of the theory suggests that the cutoff might be
dangerously low, well within the LHC reach. However our strategy can also be
applied to EFT's parametrising the indirect effects of heavy new physics in the
Electroweak and Higgs sectors
High contrast D line electromagnetically induced transparency in nanometric-thin rubidium vapor cell
Electromagnetically induced transparency (EIT) on atomic D line of
rubidium is studied using a nanometric-thin cell with atomic vapor column
length in the range of L= 400 - 800 nm. It is shown that the reduction of the
cell thickness by 4 orders as compared with an ordinary cm-size cell still
allows to form an EIT resonance for ( nm) with the
contrast of up to 40%. Remarkable distinctions of EIT formation in
nanometric-thin and ordinary cells are demonstrated. Despite the Dicke effect
of strong spectral narrowing and increase of the absorption for , EIT resonance is observed both in the absorption and the fluorescence
spectra for relatively low intensity of the coupling laser. Well resolved
splitting of the EIT resonance in moderate magnetic field for
can be used for magnetometry with nanometric spatial resolution. The presented
theoretical model well describes the observed results.Comment: Submitted to Applied Physics B: Lasers and Optics, 9 pages, 10
figure
Towards surface quantum optics with Bose-Einstein condensates in evanescent waves
We present a surface trap which allows for studying the coherent interaction
of ultracold atoms with evanescent waves. The trap combines a magnetic Joffe
trap with a repulsive evanescent dipole potential. The position of the magnetic
trap can be controlled with high precision which makes it possible to move
ultracold atoms to the surface of a glass prism in a controlled way. The
optical potential of the evanescent wave compensates for the strong attractive
van der Waals forces and generates a potential barrier at only a few hundred
nanometers from the surface. The trap is tested with Rb Bose-Einstein
condensates (BEC), which are stably positioned at distances from the surfaces
below one micrometer
Selective Reflection Spectroscopy on the UV Third Resonance Line of Cs : Simultaneous Probing of a van der Waals Atom-Surface Interaction Sensitive to Far IR Couplings and of Interatomic Collisions
We report on the analysis of FM selective reflection experiments on the
6S1/2->8P3/2 transition of Cs at 388 nm, and on the measurement of the surface
van der Waals interaction exerted by a sapphire interface on Cs(8P3/2). Various
improvements in the systematic fitting of the experiments have permitted to
supersede the major difficulty of a severe overlap of the hyperfine components,
originating on the one hand in a relatively small natural structure, and on the
other hand on a large pressure broadening imposed by the high atomic density
needed for the observation of selective reflection on a weak transition. The
strength of the van der Waals surface interaction is evaluated to be 7310
kHz.m3. An evaluation of the pressure shift of the transition is also
provided as a by-product of the measurement. We finally discuss the
significance of an apparent disagreement between the experimental measurement
of the surface interaction, and the theoretical value calculated for an
electromagnetic vacuum at a null temperature. The possible influence of the
thermal excitation of the surface is evoked, because, the dominant
contributions to the vW interaction for Cs(8P3/2) lie in the far infrared
range.Comment: submitted to Laser Physics - issue in the memory of Herbert Walther
Exploring the van der Waals Atom-Surface attraction in the nanometric range
The van der Waals atom-surface attraction, scaling as C3 z-3 for z the
atom-surface distance, is expected to be valid in the distance range 1-1000 nm,
covering 8-10 orders of magnitudes in the interaction energy. A Cs vapour
nanocell allows us to analyze the spectroscopic modifications induced by the
atom-surface attraction on the 6P3/2->6D5/2 transition. The measured C3 value
is found to be independent of the thickness in the explored range 40-130 nm,
and is in agreement with an elementary theoretical prediction. We also discuss
the specific interest of exploring short distances and large interaction
energy.Comment: to appear in Europhysics Letter
On SUSY GUTs with a degenerate Higgs mass matrix
Certain supersymmetric grand unified models predict that the coefficients of
the quadratic terms in the MSSM Higgs potential should be degenerate at the GUT
scale. We discuss some examples for such models, and we analyse the
implications of this peculiar condition of a GUT-scale degenerate Higgs mass
matrix for low-scale MSSM phenomenology. To this end we explore the parameter
space which is consistent with existing experimental constraints by means of a
Markov Chain Monte Carlo analysis.Comment: 31 pages, 27 figures; v2: typos correcte
Virtual signatures of dark sectors in Higgs couplings
Where collider searches for resonant invisible particles loose steam, dark
sectors might leave their trace as virtual effects in precision observables.
Here we explore this option in the framework of Higgs portal models, where a
sector of dark fermions interacts with the standard model through a strong
renormalizable coupling to the Higgs boson. We show that precise measurements
of Higgs-gauge and triple Higgs interactions can probe dark fermions up to the
TeV scale through virtual corrections. Observation prospects at the LHC and
future lepton colliders are discussed for the so-called singlet-doublet model
of Majorana fermions, a generalization of the bino-higgsino scenario in
supersymmetry. We advocate a two-fold search strategy for dark sectors through
direct and indirect observables.Comment: 20 pages, 7 figures, 1 tabl
- …
