63 research outputs found

    Systematic errors due to linear congruential random-number generators with the Swendsen-Wang algorithm: A warning

    Full text link
    We show that linear congruential pseudo-random-number generators can cause systematic errors in Monte Carlo simulations using the Swendsen-Wang algorithm, if the lattice size is a multiple of a very large power of 2 and one random number is used per bond. These systematic errors arise from correlations within a single bond-update half-sweep. The errors can be eliminated (or at least radically reduced) by updating the bonds in a random order or in an aperiodic manner. It also helps to use a generator of large modulus (e.g. 60 or more bits).Comment: Revtex4, 4 page

    Parametric Representation of Noncommutative Field Theory

    Full text link
    In this paper we investigate the Schwinger parametric representation for the Feynman amplitudes of the recently discovered renormalizable ϕ44\phi^4_4 quantum field theory on the Moyal non commutative R4{\mathbb R^4} space. This representation involves new {\it hyperbolic} polynomials which are the non-commutative analogs of the usual "Kirchoff" or "Symanzik" polynomials of commutative field theory, but contain richer topological information.Comment: 31 pages,10 figure

    Proper time and Minkowski structure on causal graphs

    Get PDF
    For causal graphs we propose a definition of proper time which for small scales is based on the concept of volume, while for large scales the usual definition of length is applied. The scale where the change from "volume" to "length" occurs is related to the size of a dynamical clock and defines a natural cut-off for this type of clock. By changing the cut-off volume we may probe the geometry of the causal graph on different scales and therey define a continuum limit. This provides an alternative to the standard coarse graining procedures. For regular causal lattice (like e.g. the 2-dim. light-cone lattice) this concept can be proven to lead to a Minkowski structure. An illustrative example of this approach is provided by the breather solutions of the Sine-Gordon model on a 2-dimensional light-cone lattice.Comment: 15 pages, 4 figure

    Quantum Field Theory on the Noncommutative Plane with Eq(2)E_q(2) Symmetry

    Get PDF
    We study properties of a scalar quantum field theory on the two-dimensional noncommutative plane with Eq(2)E_q(2) quantum symmetry. We start from the consideration of a firstly quantized quantum particle on the noncommutative plane. Then we define quantum fields depending on noncommutative coordinates and construct a field theoretical action using the Eq(2)E_q(2)-invariant measure on the noncommutative plane. With the help of the partial wave decomposition we show that this quantum field theory can be considered as a second quantization of the particle theory on the noncommutative plane and that this field theory has (contrary to the common belief) even more severe ultraviolet divergences than its counterpart on the usual commutative plane. Finally, we introduce the symmetry transformations of physical states on noncommutative spaces and discuss them in detail for the case of the Eq(2)E_q(2) quantum group.Comment: LaTeX, 26 page

    Non-commutative Oscillators and the commutative limit

    Full text link
    It is shown in first order perturbation theory that anharmonic oscillators in non-commutative space behave smoothly in the commutative limit just as harmonic oscillators do. The non-commutativity provides a method for converting a problem in degenerate perturbation theory to a non-degenerate problem.Comment: Latex, 6 pages, Minor changes and references adde

    The One-loop UV Divergent Structure of U(1) Yang-Mills Theory on Noncommutative R^4

    Get PDF
    We show that U(1) Yang-Mills theory on noncommutative R^4 can be renormalized at the one-loop level by multiplicative dimensional renormalization of the coupling constant and fields of the theory. We compute the beta function of the theory and conclude that the theory is asymptotically free. We also show that the Weyl-Moyal matrix defining the deformed product over the space of functions on R^4 is not renormalized at the one-loop level.Comment: 8 pages. A missing complex "i" is included in the field strength and the divergent contributions corrected accordingly. As a result the model turns out to be asymptotically fre

    Relational interpretation of the wave function and a possible way around Bell's theorem

    Full text link
    The famous ``spooky action at a distance'' in the EPR-szenario is shown to be a local interaction, once entanglement is interpreted as a kind of ``nearest neighbor'' relation among quantum systems. Furthermore, the wave function itself is interpreted as encoding the ``nearest neighbor'' relations between a quantum system and spatial points. This interpretation becomes natural, if we view space and distance in terms of relations among spatial points. Therefore, ``position'' becomes a purely relational concept. This relational picture leads to a new perspective onto the quantum mechanical formalism, where many of the ``weird'' aspects, like the particle-wave duality, the non-locality of entanglement, or the ``mystery'' of the double-slit experiment, disappear. Furthermore, this picture cirumvents the restrictions set by Bell's inequalities, i.e., a possible (realistic) hidden variable theory based on these concepts can be local and at the same time reproduce the results of quantum mechanics.Comment: Accepted for publication in "International Journal of Theoretical Physics

    The Energy-Momentum Tensor in Noncommutative Gauge Field Models

    Full text link
    We discuss the different possibilities of constructing the various energy-momentum tensors for noncommutative gauge field models. We use Jackiw's method in order to get symmetric and gauge invariant stress tensors--at least for commutative gauge field theories. The noncommutative counterparts are analyzed with the same methods. The issues for the noncommutative cases are worked out.Comment: 11 pages, completed reference

    Perturbation theory of the space-time non-commutative real scalar field theories

    Full text link
    The perturbative framework of the space-time non-commutative real scalar field theory is formulated, based on the unitary S-matrix. Unitarity of the S-matrix is explicitly checked order by order using the Heisenberg picture of Lagrangian formalism of the second quantized operators, with the emphasis of the so-called minimal realization of the time-ordering step function and of the importance of the \star-time ordering. The Feynman rule is established and is presented using ϕ4\phi^4 scalar field theory. It is shown that the divergence structure of space-time non-commutative theory is the same as the one of space-space non-commutative theory, while there is no UV-IR mixing problem in this space-time non-commutative theory.Comment: Latex 26 pages, notations modified, add reference

    Noncommutative Quantum Mechanics and Seiberg-Witten Map

    Full text link
    In order to overcome ambiguity problem on identification of mathematical objects in noncommutative theory with physical observables, quantum mechanical system coupled to the NC U(1) gauge field in the noncommutative space is reformulated by making use of the unitarized Seiberg-Witten map, and applied to the Aharonov-Bohm and Hall effects of the NC U(1) gauge field. Retaining terms only up to linear order in the NC parameter \theta, we find that the AB topological phase and the Hall conductivity have both the same formulas as those of the ordinary commutative space with no \theta-dependence.Comment: 7 pages, no figures, uses revtex4; 8 pages, conclusion changed, Appendix adde
    corecore