1,444 research outputs found
Nonlinear lattice model of viscoelastic Mode III fracture
We study the effect of general nonlinear force laws in viscoelastic lattice
models of fracture, focusing on the existence and stability of steady-state
Mode III cracks. We show that the hysteretic behavior at small driving is very
sensitive to the smoothness of the force law. At large driving, we find a Hopf
bifurcation to a straight crack whose velocity is periodic in time. The
frequency of the unstable bifurcating mode depends on the smoothness of the
potential, but is very close to an exact period-doubling instability. Slightly
above the onset of the instability, the system settles into a exactly
period-doubled state, presumably connected to the aforementioned bifurcation
structure. We explicitly solve for this new state and map out its
velocity-driving relation
Adjunctive quetiapine for serotonin reuptake inhibitor-resistant obsessive-compulsive disorder: A meta-analysis of randomised controlled treatment trials
Small studies have shown positive effects from adding a variety of antipsychotic agents in patients with obsessive–compulsive disorder who are unresponsive to treatment with serotonin reuptake inhibitors. The evidence, however, is contradictory. This paper reports a meta-analysis of existing double-blind randomized placebo-controlled studies looking at the addition of the second-generation antipsychotic quetiapine in such cases. Three studies fulfilled the inclusion criteria. Altogether 102 individuals were subjected to analysis using Review Manager (4.2.7). The results showed evidence of efficacy for adjunctive quetiapine (< 400 mg/day) on the primary efficacy criterion, measured as changes from baseline in total Yale–Brown Obsessive Compulsive Scale scores (P = 0.008), the clinical significance of which was limited by between-study heterogeneity. The mechanism underlying the effect may involve serotonin and/or dopamine neurotransmission
Closed-state inactivation involving an internal gate in Kv4.1 channels modulates pore blockade by intracellular quaternary ammonium ions.
Voltage-gated K(+) (Kv) channel activation depends on interactions between voltage sensors and an intracellular activation gate that controls access to a central pore cavity. Here, we hypothesize that this gate is additionally responsible for closed-state inactivation (CSI) in Kv4.x channels. These Kv channels undergo CSI by a mechanism that is still poorly understood. To test the hypothesis, we deduced the state of the Kv4.1 channel intracellular gate by exploiting the trap-door paradigm of pore blockade by internally applied quaternary ammonium (QA) ions exhibiting slow blocking kinetics and high-affinity for a blocking site. We found that inactivation gating seemingly traps benzyl-tributylammonium (bTBuA) when it enters the central pore cavity in the open state. However, bTBuA fails to block inactivated Kv4.1 channels, suggesting gated access involving an internal gate. In contrast, bTBuA blockade of a Shaker Kv channel that undergoes open-state P/C-type inactivation exhibits fast onset and recovery inconsistent with bTBuA trapping. Furthermore, the inactivated Shaker Kv channel is readily blocked by bTBuA. We conclude that Kv4.1 closed-state inactivation modulates pore blockade by QA ions in a manner that depends on the state of the internal activation gate
Closed-state inactivation involving an internal gate in Kv4.1 channels modulates pore blockade by intracellular quaternary ammonium ions
Arrested Cracks in Nonlinear Lattice Models of Brittle Fracture
We generalize lattice models of brittle fracture to arbitrary nonlinear force
laws and study the existence of arrested semi-infinite cracks. Unlike what is
seen in the discontinuous case studied to date, the range in driving
displacement for which these arrested cracks exist is very small. Also, our
results indicate that small changes in the vicinity of the crack tip can have
an extremely large effect on arrested cracks. Finally, we briefly discuss the
possible relevance of our findings to recent experiments.Comment: submitted to PRE, Rapid Communication
Phase-Field Model of Mode III Dynamic Fracture
We introduce a phenomenological continuum model for mode III dynamic fracture
that is based on the phase-field methodology used extensively to model
interfacial pattern formation. We couple a scalar field, which distinguishes
between ``broken'' and ``unbroken'' states of the system, to the displacement
field in a way that consistently includes both macroscopic elasticity and a
simple rotationally invariant short scale description of breaking. We report
two-dimensional simulations that yield steady-state crack motion in a strip
geometry above the Griffith threshold.Comment: submitted to PR
Crack Front Waves and the dynamics of a rapidly moving crack
Crack front waves are localized waves that propagate along the leading edge
of a crack. They are generated by the interaction of a crack with a localized
material inhomogeneity. We show that front waves are nonlinear entities that
transport energy, generate surface structure and lead to localized velocity
fluctuations. Their existence locally imparts inertia, which is not
incorporated in current theories of fracture, to initially "massless" cracks.
This, coupled to crack instabilities, yields both inhomogeneity and scaling
behavior within fracture surface structure.Comment: Embedded Latex file including 4 figure
Dynamical stability of the crack front line
Dynamical stability of the crack front line that propagates between two
plates is studied numerically using the simple two-dimensional mass-spring
model. It is demonstrated that the straight front line is unstable for low
speed while it becomes stable for high speed. For the uniform model, the
roughness exponent in the slower speed region is fairly constant around 0.4 and
there seems to be a rough-smooth transition at a certain speed. For the
inhomogeneous case with quenched randomness, the transition is gradual.Comment: 14 pages, 7 figure
Socio-demographic and clinical characterization of patients with obsessive-compulsive tic-related disorder (OCTD) : An Italian multicenter study
© Copyright by Pacini Editore SrlIn the DSM-5 a new "tic-related" specifier for obsessive compulsive disorder (OCD) has been introduced, highlighting the importance of an accurate characterization of patients suffering from obsessive-compulsive tic-related disorder ("OCTD"). In order to characterize OCTD from a socio-demographic and clinical perspective, the present multicenter study was carried out. The sample consists of 266 patients, divided in two groups with lifetime diagnoses of OCD and OCTD, respectively. OCTD vs OCD patients showed a significant male prevalence (68.5% vs 48.5%; p < .001), a higher rate of psychiatric comorbidities (69.4 vs 50%; p < .001) - mainly with neurodevelopmental disorders (24 vs 0%; p < .001), a lower education level and professional status (middle school diploma: 25 vs 7.6%; full-Time job 44.4 vs 58%; p < .001). Moreover, OCTD vs OCD patients showed significantly earlier age of OCD and psychiatric comorbidity onsets (16.1 ± 10.8 vs 22.1 ± 9.5 years; p < .001, and 18.3 ± 12.8 vs 25.6 ± 9.4: p < .001, respectively). Patients with OCTD patients were treated mainly with antipsychotic and with a low rate of benzodiazepine (74.2 vs 38.2% and 20.2 vs 31.3%, respectively; p < .001). Finally, OCTD vs OCD patients showed higher rates of partial treatment response (58.1 vs 38%; p < .001), lower rates of current remission (35.5 vs 54.8%; p < .001) and higher rates of suicidal ideation (63.2 vs 41.7%; p < .001) and attempts (28.9 vs 8.3%; p < .001). Patients with OCTD report several unfavorable socio-demographic and clinical characteristics compared to OCD patients without a history of tic. Additional studies on larger sample are needed to further characterize OCTD patients from clinical and therapeutic perspectives.Peer reviewedFinal Published versio
Dynamics of Viscoplastic Deformation in Amorphous Solids
We propose a dynamical theory of low-temperature shear deformation in
amorphous solids. Our analysis is based on molecular-dynamics simulations of a
two-dimensional, two-component noncrystalline system. These numerical
simulations reveal behavior typical of metallic glasses and other viscoplastic
materials, specifically, reversible elastic deformation at small applied
stresses, irreversible plastic deformation at larger stresses, a stress
threshold above which unbounded plastic flow occurs, and a strong dependence of
the state of the system on the history of past deformations. Microscopic
observations suggest that a dynamically complete description of the macroscopic
state of this deforming body requires specifying, in addition to stress and
strain, certain average features of a population of two-state shear
transformation zones. Our introduction of these new state variables into the
constitutive equations for this system is an extension of earlier models of
creep in metallic glasses. In the treatment presented here, we specialize to
temperatures far below the glass transition, and postulate that irreversible
motions are governed by local entropic fluctuations in the volumes of the
transformation zones. In most respects, our theory is in good quantitative
agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure
- …
