186 research outputs found
Improved numerical stability of stationary black hole evolution calculations
We experiment with modifications of the BSSN form of the Einstein field
equations (a reformulation of the ADM equations) and demonstrate how these
modifications affect the stability of numerical black hole evolution
calculations. We use excision to evolve both non-rotating and rotating
Kerr-Schild black holes in octant and equatorial symmetry, and without any
symmetry assumptions, and obtain accurate and stable simulations for specific
angular momenta J/M of up to about 0.9M.Comment: 13 pages, 11 figures, 1 typo in Eq. (20) correcte
Quantum-state control in optical lattices
We study the means to prepare and coherently manipulate atomic wave packets
in optical lattices, with particular emphasis on alkali atoms in the
far-detuned limit. We derive a general, basis independent expression for the
lattice operator, and show that its off-diagonal elements can be tailored to
couple the vibrational manifolds of separate magnetic sublevels. Using these
couplings one can evolve the state of a trapped atom in a quantum coherent
fashion, and prepare pure quantum states by resolved-sideband Raman cooling. We
explore the use of atoms bound in optical lattices to study quantum tunneling
and the generation of macroscopic superposition states in a double-well
potential. Far-off-resonance optical potentials lend themselves particularly
well to reservoir engineering via well controlled fluctuations in the
potential, making the atom/lattice system attractive for the study of
decoherence and the connection between classical and quantum physics.Comment: 35 pages including 8 figures. To appear in Phys. Rev. A. March 199
The Birth of a Galaxy. II. The Role of Radiation Pressure
Massive stars provide feedback that shapes the interstellar medium of
galaxies at all redshifts and their resulting stellar populations. Here we
present three adaptive mesh refinement radiation hydrodynamics simulations that
illustrate the impact of momentum transfer from ionising radiation to the
absorbing gas on star formation in high-redshift dwarf galaxies. Momentum
transfer is calculated by solving the radiative transfer equation with a ray
tracing algorithm that is adaptive in spatial and angular coordinates. We find
that momentum input partially affects star formation by increasing the
turbulent support to a three-dimensional rms velocity equal to the circular
velocity of early haloes. Compared to a calculation that neglects radiation
pressure, the star formation rate is decreased by a factor of five to 1.8 x
10^{-2} Msun/yr in a dwarf galaxy with a dark matter and stellar mass of 2.0 x
10^8 and 4.5 x 10^5 solar masses, respectively, when radiation pressure is
included. Its mean metallicity of 10^{-2.1} Z_sun is consistent with the
observed dwarf galaxy luminosity-metallicity relation. However, what one may
naively expect from the calculation without radiation pressure, the central
region of the galaxy overcools and produces a compact, metal-rich stellar
population with an average metallicity of 0.3 Z_sun, indicative of an incorrect
physical recipe. In addition to photo-heating in HII regions, radiation
pressure further drives dense gas from star forming regions, so supernovae
feedback occurs in a warmer and more diffuse medium, launching metal-rich
outflows. Capturing this aspect and a temporal separation between the start of
radiative and supernova feedback are numerically important in the modeling of
galaxies to avoid the "overcooling problem". We estimate that dust in early
low-mass galaxies is unlikely to aid in momentum transfer from radiation to the
gas.Comment: 18 pages, 11 figures, replaced with accepted version, MNRAS. Minor
changes with the conclusions unaffecte
Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites
The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions.
The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness
of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence
were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density
and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that
the wood in the starch composites did not prevent water loss from the samples.Peer reviewe
Exploring new physics frontiers through numerical relativity
The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology
Role of matrix metalloproteinases in the development of airway inflammation and remodeling
Lung function, asthma symptoms, and quality of life for children in public housing in Boston: a case-series analysis
BACKGROUND: Children in urban public housing are at high risk for asthma, given elevated environmental and social exposures and suboptimal medical care. For a multifactorial disease like asthma, design of intervention studies can be influenced by the relative prevalence of key risk factors. To better understand risk factors for asthma morbidity in the context of an environmental intervention study, we conducted a detailed baseline evaluation of 78 children (aged 4–17 years) from three public housing developments in Boston. METHODS: Asthmatic children and their caregivers were recruited between April 2002 and January 2003. We conducted intake interviews that captured a detailed family and medical history, including questions regarding asthma symptom severity, access to health care, medication usage, and psychological stress. Quality of life was evaluated for both the child and caregiver with an asthma-specific scale. Pulmonary function was measured with a portable spirometer, and allergy testing for common indoor and outdoor allergens was conducted with skin testing using the prick puncture method. Exploratory linear and logistic regression models evaluating predictors of respiratory symptoms, quality of life, and pulmonary function were conducted using SAS. RESULTS: We found high rates of obesity (56%) and allergies to indoor contaminants such as cockroaches (59%) and dust mites (59%). Only 36% of children with persistent asthma reported being prescribed any daily controller medication, and most did not have an asthma action plan or a peak flow meter. One-time lung function measures were poorly correlated with respiratory symptoms or quality of life, which were significantly correlated with each other. In multivariate regression models, household size, body mass index, and environmental tobacco smoke exposure were positively associated with respiratory symptom severity (p < 0.10). Symptom severity was negatively associated with asthma-related quality of life for the child and the caregiver, with caregiver (but not child) quality of life significantly influenced by caregiver stress and whether the child was in the intensive care unit at birth. CONCLUSION: Given the elevated prevalence of multiple risk factors, coordinated improvements in the social environment, the built environment, and in medical management would likely yield the greatest health benefits in this high-risk population
Role of the tachykinin NK1 receptor in a murine model of cigarette smoke-induced pulmonary inflammation
<p>Abstract</p> <p>Background</p> <p>The tachykinins, substance P and neurokinin A, present in sensory nerves and inflammatory cells such as macrophages and dendritic cells, are considered as pro-inflammatory agents. Inflammation of the airways and lung parenchyma plays a major role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and increased tachykinin levels are recovered from the airways of COPD patients. The aim of our study was to clarify the involvement of the tachykinin NK<sub>1 </sub>receptor, the preferential receptor for substance P, in cigarette smoke (CS)-induced pulmonary inflammation and emphysema in a mouse model of COPD.</p> <p>Methods</p> <p>Tachykinin NK<sub>1 </sub>receptor knockout (NK<sub>1</sub>-R<sup>-/-</sup>) mice and their wild type controls (all in a mixed 129/sv-C57BL/6 background) were subjected to sub acute (4 weeks) or chronic (24 weeks) exposure to air or CS. 24 hours after the last exposure, pulmonary inflammation and development of emphysema were evaluated.</p> <p>Results</p> <p>Sub acute and chronic exposure to CS resulted in a substantial accumulation of inflammatory cells in the airways of both WT and NK<sub>1</sub>-R<sup>-/- </sup>mice. However, the CS-induced increase in macrophages and dendritic cells was significantly impaired in NK<sub>1</sub>-R<sup>-/- </sup>mice, compared to WT controls, and correlated with an attenuated release of MIP-3α/CCL20 and TGF-β1. Chronic exposure to CS resulted in development of pulmonary emphysema in WT mice. NK<sub>1</sub>-R<sup>-/- </sup>mice showed already enlarged airspaces upon air-exposure. Upon CS-exposure, the NK<sub>1</sub>-R<sup>-/- </sup>mice did not develop additional destruction of the lung parenchyma. Moreover, an impaired production of MMP-12 by alveolar macrophages upon CS-exposure was observed in these KO mice. In a pharmacological validation experiment using the NK<sub>1 </sub>receptor antagonist RP 67580, we confirmed the protective effect of absence of the NK<sub>1 </sub>receptor on CS-induced pulmonary inflammation.</p> <p>Conclusion</p> <p>These data suggest that the tachykinin NK<sub>1 </sub>receptor is involved in the accumulation of macrophages and dendritic cells in the airways upon CS-exposure and in the development of smoking-induced emphysema. As both inflammation of the airways and parenchymal destruction are important characteristics of COPD, these findings may have implications in the future treatment of this devastating disease.</p
- …
