7,583 research outputs found

    Technique for calibrating angular measurement devices when calibration standards are unavailable

    Get PDF
    A calibration technique is proposed that will allow the calibration of certain angular measurement devices without requiring the use of absolute standard. The technique assumes that the device to be calibrated has deterministic bias errors. A comparison device must be available that meets the same requirements. The two devices are compared; one device is then rotated with respect to the other, and a second comparison is performed. If the data are reduced using the described technique, the individual errors of the two devices can be determined

    Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    Get PDF
    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment

    Development of and flight results from the Space Acceleration Measurement System (SAMS)

    Get PDF
    Described here is the development of and the flight results from the Space Acceleration Measurement System (SAMS) flight units used in the Orbiter middeck, Spacelab module, and the Orbitercargo bay. The SAMS units are general purpose microgravity accelerometers designed to support a variety of science experiments with microgravity acceleration measurements. A total of six flight units have been fabricated; four for use in the Orbiter middeck and Spacelab module, and two for use in the Orbiter cargo bay. The design of the units is briefly described. The initial two flights of SAMS units on STS-40 (June 1991) and STS-43 (August 1991) resulted in 371 megabytes and 2.6 gigabytes of data respectively. Analytical techniques developed to examine this quantity of acceleration data are described and sample plots of analyzed data are illustrated. Future missions for the SAMS units are listed

    Space acceleration measurement system triaxial sensor head error budget

    Get PDF
    The objective of the Space Acceleration Measurement System (SAMS) is to measure and record the microgravity environment for a given experiment aboard the Space Shuttle. To accomplish this, SAMS uses remote triaxial sensor heads (TSH) that can be mounted directly on or near an experiment. The errors of the TSH are reduced by calibrating it before and after each flight. The associated error budget for the calibration procedure is discussed here

    Infinite-Dimensional Estabrook-Wahlquist Prolongations for the sine-Gordon Equation

    Full text link
    We are looking for the universal covering algebra for all symmetries of a given pde, using the sine-Gordon equation as a typical example for a non-evolution equation. For non-evolution equations, Estabrook-Wahlquist prolongation structures for non-local symmetries depend on the choice of a specific sub-ideal, of the contact module, to define the pde. For each inequivalent such choice we determine the most general solution of the prolongation equations, as sub-algebras of the (infinite-dimensional) algebra of all vector fields over the space of non-local variables associated with the pde, in the style of Vinogradov covering spaces. We show explicitly how previously-known prolongation structures, known to lie within the Kac-Moody algebra, A1(1)A_1^{(1)}, are special cases of these general solutions, although we are unable to identify the most general solutions with previously-studied algebras. We show the existence of gauge transformations between prolongation structures, viewed as determining connections over the solution space, and use these to relate (otherwise) distinct algebras. Faithful realizations of the universal algebra allow integral representations of the prolongation structure, opening up interesting connections with algebras of Toeplitz operators over Banach spaces, an area that has only begun to be explored.Comment: 46 pages, plain TeX, no figures, to be published in J. Math. Phys

    X-Ray Spectral Variability of Extreme BL Lac AGN H1426+428

    Get PDF
    Between 7 March 2002 and 15 June 2002, intensive X-ray observations were carried out on the extreme BL Lac object H1426+428 with instruments on board the Rossi X-ray Timing Explorer (RXTE). These instruments provide measurements of H1426+428 in the crucial energy range that characterizes the first peak of its spectral energy distribution. This peak, which is almost certainly due to synchrotron emission, has previously been inferred to be in excess of 100 keV. By taking frequent observations over a four-month campaign, which included \sim450 ksec of RXTE time, studies of flux and spectral variability on multiple timescales were performed, along with studies of spectral hysteresis. The 3-24 keV X-ray flux and spectra exhibited significant variability, implying variability in the location of the first peak of the spectral energy distribution. Hysteresis patterns were observed, and their characteristics have been discussed within the context of emission models.Comment: accepted for publication in Astrophysical Journa

    Note on Invariants of the Weyl Tensor

    Get PDF
    Algebraically special gravitational fields are described using algebraic and differential invariants of the Weyl tensor. A type III invariant is also given and calculated for Robinson-Trautman spaces.Comment: 3 pages, no figures, corrected expression (12

    Probing spin relaxation in an individual InGaAs quantum dot using a single electron optical spin memory device

    Full text link
    We demonstrate all optical electron spin initialization, storage and readout in a single self-assembled InGaAs quantum dot. Using a single dot charge storage device we monitor the relaxation of a single electron over long timescales exceeding 40{\mu}s. The selective generation of a single electron in the quantum dot is performed by resonant optical excitation and subsequent partial exciton ionization; the hole is removed from the quantum dot whilst the electron remains stored. When subject to a magnetic field applied in Faraday geometry, we show how the spin of the electron can be prepared with a polarization up to 65% simply by controlling the voltage applied to the gate electrode. After generation, the electron spin is stored in the quantum dot before being read out using an all optical implementation of spin to charge conversion technique, whereby the spin projection of the electron is mapped onto the more robust charge state of the quantum dot. After spin to charge conversion, the charge state of the dot is repeatedly tested by pumping a luminescence recycling transition to obtain strong readout signals. In combination with spin manipulation using fast optical pulses or microwave pulses, this provides an ideal basis for probing spin coherence in single self-assembled quantum dots over long timescales and developing optimal methods for coherent spin control

    Positioning system for single or multi-axis sensitive instrument calibration and calibration system for use therewith

    Get PDF
    A positioning and calibration system are provided for use in calibrating a single or multi axis sensitive instrument, such as an inclinometer. The positioning system includes a positioner that defines six planes of tangential contact. A mounting region within the six planes is adapted to have an inclinometer coupled thereto. The positioning system also includes means for defining first and second flat surfaces that are approximately perpendicular to one another with the first surface adapted to be oriented relative to a local or induced reference field of interest to the instrument being calibrated, such as a gravitational vector. The positioner is positioned such that one of its six planes tangentially rests on the first flat surface and another of its six planes tangentially contacts the second flat surface. A calibration system is formed when the positioning system is used with a data collector and processor
    corecore