1,256 research outputs found

    Karst of Western Cuba: Observations, Geomorphology, and Diagenesis

    Get PDF
    In Cuba, we observed many karst features in a variety of hydrogeologic settings. These hy-drogeologic settings occur in close proximity only because of the complex tectonic history of the is-land. We observed caves within rocks ranging from Pleistocene to Jurassic, and representing a range of diagenetic ages from eogenetic to teloge-netic. Our observations are from the western one-third of the island of Cuba; however, we believe they are representative of hydrogeologic settings found throughout the island

    Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition.

    Get PDF
    The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy

    Dynamical supersymmetry breaking from unoriented D-brane instantons

    Full text link
    We study the non-perturbative dynamics of an unoriented Z_5-quiver theory of GUT kind with gauge group U(5) and chiral matter. At strong coupling the non-perturbative dynamics is described in terms of set of baryon/meson variables satisfying a quantum deformed constraint. We compute the effective superpotential of the theory and show that it admits a line of supersymmetric vacua and a phase where supersymmetry is dynamically broken via gaugino condensation.Comment: 24 pages, 1 figur

    The Ruled Vertex and Nontoric del Pezzo Surfaces

    Full text link
    We construct the topological partition function of local nontoric del Pezzo surfaces using the ruled vertex formalism.Comment: 16 pages, 4 figure

    Mechanics and dynamics in colloidal systems with complex interactions

    Get PDF

    FCNC Processes from D-brane Instantons

    Get PDF
    Low string scale models might be tested at the LHC directly by their Regge resonances. For such models it is important to investigate the constraints of Standard Model precision measurements on the string scale. It is shown that highly suppressed FCNC processes like K0- bar K^0 oscillations or leptonic decays of the D0-meson provide non-negligible lower bounds on both the perturbatively and surprisingly also non-perturbatively induced string theory couplings. We present both the D-brane instanton formalism to compute such amplitudes and discuss various possible scenarios and their constraints on the string scale for (softly broken) supersymmetric intersecting D-brane models.Comment: 28 pages, 13 figures, reference added, 1 typo corrected, style file adde

    Instanton Induced Neutrino Majorana Masses in CFT Orientifolds with MSSM-like spectra

    Get PDF
    Recently it has been shown that string instanton effects may give rise to neutrino Majorana masses in certain classes of semi-realistic string compactifications. In this paper we make a systematic search for supersymmetric MSSM-like Type II Gepner orientifold constructions admitting boundary states associated with instantons giving rise to neutrino Majorana masses and other L- and/or B-violating operators. We analyze the zero mode structure of D-brane instantons on general type II orientifold compactifications, and show that only instantons with O(1) symmetry can have just the two zero modes required to contribute to the 4d superpotential. We however discuss how the addition of fluxes and/or possible non-perturbative extensions of the orientifold compactifications would allow also instantons with Sp(2)Sp(2) and U(1) symmetries to generate such superpotentials. In the context of Gepner orientifolds with MSSM-like spectra, we find no models with O(1) instantons with just the required zero modes to generate a neutrino mass superpotential. On the other hand we find a number of models in one particular orientifold of the Gepner model (2,4,22,22)(2,4,22,22) with Sp(2)Sp(2) instantons with a few extra uncharged non-chiral zero modes which could be easily lifted by the mentioned effects. A few more orientifold examples are also found under less stringent constraints on the zero modes. This class of Sp(2)Sp(2) instantons have the interesting property that R-parity conservation is automatic and the flavour structure of the neutrino Majorana mass matrices has a simple factorized form.Comment: 68 pages, 2 figures; v2. typos corrected, refs adde

    D-brane Instantons on the T^6/Z_3 orientifold

    Full text link
    We give a detailed microscopic derivation of gauge and stringy instanton generated superpotentials for gauge theories living on D3-branes at Z_3-orientifold singularities. Gauge instantons are generated by D(-1)-branes and lead to Affleck, Dine and Seiberg (ADS) like superpotentials in the effective N=1 gauge theories with three generations of bifundamental and anti/symmetric matter. Stringy instanton effects are generated by Euclidean ED3-branes wrapping four-cycles on T^6/\Z_3. They give rise to Majorana masses in one case and non-renormalizable superpotentials for the other cases. Finally we determine the conditions under which ADS like superpotentials are generated in N=1 gauge theories with adjoints, fundamentals, symmetric and antisymmetric chiral matter.Comment: 31 pages, no figure

    Stringy Instantons and Quiver Gauge Theories

    Get PDF
    We explore contributions to the 4D effective superpotential which arise from Euclidean D3 branes (``instantons'') that intersect space-filling D-branes. These effects can perturb the effective field theory on the space-filling branes by nontrivial operators composed of charged matter fields, changing the vacuum structure in a qualitative way in some examples. Our considerations are exemplified throughout by a careful study of a fractional brane configuration on a del Pezzo surface.Comment: 30 pages, 4 figures; v2: reference added; v3: confusing minor error in axion charges fixed (thanks to D. Green for pointing it out

    Black String Entropy and Fourier-Mukai Transform

    Get PDF
    We propose a microscopic description of black strings in F-theory based on string duality and Fourier-Mukai transform. These strings admit several different microscopic descriptions involving D-brane as well as M2 or M5-brane configurations on elliptically fibered Calabi-Yau threefolds. In particular our results can also be interpreted as an asymptotic microstate count for D6-D2-D0 configurations in the limit of large D2-charge on the elliptic fiber. The leading behavior of the microstate degeneracy in this limit is shown to agree with the macroscopic entropy formula derived from the black string supergravity solution.Comment: 22 pages, latex; v2: substantial revision of the macroscopic description of the system; results essentially unchange
    corecore