525 research outputs found
Monitoring Wound Healing with Contactless Measurements and Augmented Reality
Objective: This work presents a device for non-invasive wound parameters assessment, designed to overcome the drawbacks of traditional methods, which are mostly rough, inaccurate, and painful for the patient. The device estimates the morphological parameters of the wound and provides augmented reality (AR) visual feedback on the wound healing status by projecting the wound border acquired during the last examination, thus improving doctor-patient communication. Methods: An accurate 3D model of the wound is created by stereophotogrammetry and refined through self-organizing maps. The 3D model is used to estimate physical parameters for wound healing assessment and integrates AR functionalities based on a miniaturized projector. The physical parameter estimation functionalities are evaluated in terms of precision, accuracy, inter-operator variability, and repeatability, whereas AR wound border projection is evaluated in terms of accuracy on the same phantom. Results: The accuracy and precision of the device are respectively 2% and 1.2% for linear parameters, and 1.7% and 1.3% for area and volume. The AR projection shows an error distance <1 mm. No statistical difference was found between the measurements of different operators. Conclusion: The device has proven to be an objective and non-operator-dependent tool for assessing the morphological parameters of the wound. Comparison with non-contact devices shows improved accuracy, offering reliable and rigorous measurements. Clinical Impact: Chronic wounds represent a significant health problem with high recurrence rates due to the ageing of the population and diseases such as diabetes and obesity. The device presented in this work provides an easy-to-use non-invasive tool to obtain useful information for treatment
Hyperbranched Quasi-1D TiO2 Nanostructure for Hybrid Organic-Inorganic Solar Cells
The performance of hybrid solar cells is strongly affected by the device morphology. In this work we demonstrate a Poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises
an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the
efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of Poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure
Fosfomycin Pharmacokinetic Profile in Plasma and Urine and Quantitative Estimation in Prostate and Seminal Vesicles after One and Two Consecutive Doses of Oral Fosfomycin Trometamol in Healthy Male Volunteers
The present Phase I study investigated, for the first time, fosfomycin pharmacokinetics in humans after two 3 g doses of fosfomycin trometamol administered 27 h apart, according to the dose regimen recommended for the prophylactic indication for transrectal prostate biopsy in adult men. Plasma, urine and seminal plasma concentrations were measured after one and two consecutive doses in 24 healthy men, representative of the target population of the prophylactic indication. Prostate and seminal vesicle concentrations were estimated based on seminal plasma concentrations using a one-step regression method. The exposure to fosfomycin was very similar in rate (C-max, t(max)) after one and two doses. The AUC showed a minimal increment. On average, the apparent volume of distribution was high (>100 L), and the mean clearance had an intermediate value. The total amount and dose fraction of fosfomycin excreted in urine showed a small increment after two doses. The renal clearance was about 5 L/h. The fosfomycin concentration in the prostate and seminal vesicles showed that the antibiotic increased on average after two consecutive doses. This result confirmed the ability of fosfomycin to distribute into the prostate and into seminal vesicles after one single dose and that a two consecutive dose regimen increases the antibiotic availability inside these peripheral tissues
Case report: Asp194Ala variant in MFN2 is associated with ALS-FTD in an Italian family
Background: MFN2 gene encodes the protein Mitofusin 2, involved in essential mitochondrial functions such as fusion, trafficking, turnover, and cellular interactions. We describe a family carrying a novel MFN2 mutation associated with ALS-frontotemporal dementia (FTD) clinical phenotype in the mother and Charcot-Marie-Tooth disease type 2A (CMT2A) in her son. Case presentation: The mother, a 67-year-old woman, referred to us for a three year-history of mood disturbance and gait impairment, and a more recent hypophonia, dysarthria, dysphagia, and diffuse muscle wasting. Family history was positive for psychiatric disorders and gait disturbances. Brain 18F-FDG PET showed severe hypometabolism in the fronto-temporal brain cortex bilaterally. Electrodiagnostic studies (EDX) showed severe motor axonopathy in the bulbar, cervical and lumbosacral districts. Her 41-year-old son had a history of mood depression and sensory disturbances in the limbs, along with mild muscle wasting, weakness, and reduced reflexes. Nerve conduction studies revealed a moderate sensory-motor polyneuropathy, while brain MRI was normal. Whole exome sequencing of the patients’ DNA identified the novel MFN2 (NM_014874.4) variant c.581A>C p.(Asp194Ala). Conclusion: Our findings provide evidence of heterogenous clinical manifestations in family members sharing the same MFN2 molecular defect. Additionally, we present the first documented case of ASL-FTD associated with an MFN2 mutation, thereby expanding the range of MFN-related disorders. Further research involving larger cohorts of patients will be needed to better understand the role of MFN2 as a contributing gene in the development of ALS-FTD
Changes in non-motor symptoms in patients with Parkinson's disease following COVID-19 pandemic restrictions: A systematic review
This review discussed the effects of the impact of the Coronavirus Disease 2019 (COVID-19) pandemic on the psychological wellbeing of people with Parkinson's disease (PD) focusing specifically on depressive symptoms, anxiety levels, sleep, and quality of life (QoL). Together with motor symptoms, psychological symptoms are common and disabling conditions in the clinical course of PD becoming a relevant topic as a result of the lockdown measure due to alter their everyday life. We searched on PubMed online electronic databases for English articles published between January 2020 and 31 December 2021. Twenty-eight relevant studies were found and included in the review. Heterogeneous data emerged from the topics analyzed. Overall, data from depression studies showed significant depressive symptoms if the patient was analyzed longitudinally or vs. a control group consisting in healthy subjects, while these differences become minimal when the control group is a family member. Differently, in most of the studies reviewed there is no evidence of a statistically significant impact on anxiety disorders, nor on the quality of sleep. Conversely, PD patients showed a statistically significant negative impact of QoL compared with control groups or other neurological conditions. Although these findings must be interpreted carefully in the light of the studies' limitations, both in methodology and design, collectively our review showed that COVID-19 pandemic has had negative effects on the mental health of people with PD, due to disruption of healthcare services, loss of usual activities and supports and reduction in physical activity
An Electrically Conductive Oleogel Paste for Edible Electronics
Edible electronics will facilitate point-of-care testing through safe devices digested/degraded in the body/environment after performing a specific function. This technology, to thrive, requires a library of materials that are the basic building blocks for eatable platforms. Edible electrical conductors fabricated with green methods and at a large scale and composed of food derivatives, ingestible in large amounts without risk for human health are needed. Here, conductive pastes made with materials with a high tolerable upper intake limit (≥mg kg−1 body weight per day) are proposed. Conductive oleogel composites, made with biodegradable and food-grade materials like natural waxes, oils, and activated carbon conductive fillers, are presented. The proposed pastes are compatible with manufacturing processes such as direct ink writing and thus are suitable for an industrial scale-up. These conductors are built without using solvents and with tunable electromechanical features and adhesion depending on the composition. They have antibacterial and hydrophobic properties so that they can be used in contact with food preventing contamination and preserving its organoleptic properties. As a proof-of-principle application, the edible conductive pastes are demonstrated to be effective edible contacts for food impedance analysis, to be integrated, for example, in smart fruit labels for ripening monitoring
Recommended from our members
LRRK2 at the interface of autophagosomes, endosomes and lysosomes
Over the past 20 years, substantial progress has been made in identifying the underlying genetics of Parkinson’s disease (PD). Of the known genes, LRRK2 is a major genetic contributor to PD. However, the exact function of LRRK2 remains to be elucidated. In this review, we discuss how familial forms of PD have led us to hypothesize that alterations in endomembrane trafficking play a role in the pathobiology of PD. We will discuss the major observations that have been made to elucidate the role of LRRK2 in particular, including LRRK2 animal models and high-throughput proteomics approaches. Taken together, these studies strongly support a role of LRRK2 in vesicular dynamics. We also propose that targeting these pathways may not only be beneficial for developing therapeutics for LRRK2-driven PD, but also for other familial and sporadic cases
Sodium Levels Predict Disability at Discharge in Guillain-Barré Syndrome: A Retrospective Cohort Study
Guillain-Barré syndrome (GBS) is an inflammatory polyradiculopathy with potentially severe complications. Clinical tools for risk stratification have been developed, but no definitive prognostic biomarker has been reported. Hyponatremia is frequent in GBS patients, but the impact of serum sodium levels on clinical outcomes is still ill-defined. In this retrospective cohort study, we included all adult patients diagnosed with GBS spectrum disorders at our center from January 2010 to July 2020. Disability at discharge was assessed with the GBS Disability Score (GDS), and all clinical and laboratory data was retrieved from medical charts. Thirty (58.8%) of the 51 subjects included in the study were discharged with severe residual disability (GDS ≥ 3). After accounting for relevant confounders, the odds of experiencing severe disability decreased by 27% (p = 0.027) for each unitary increase in serum sodium concentration. Thirteen (25.5%) patients were diagnosed with mild to moderate hyponatremia; the use of intravenous immune globulin (IVIG) independently increased the odds of developing hyponatremia. In conclusion, we found a significant, independent association between baseline serum sodium levels and severe disability at discharge in GBS patients. In our cohort, hyponatremia was more frequently observed after treatment with IVIG, suggesting dilutional pseudohyponatremia as a probable cause
- …
