520 research outputs found
Microscopic measurement of the linear compressibilities of two-dimensional fatty acid mesophases
The linear compressibility of two-dimensional fatty acid mesophases has
determined by grazing incidence x-ray diffraction. Surface pressure vs
molecular area isotherms were reconstructed from these measurements, and the
linear compressibility (relative distortion along a given direction for
isotropic applied stress) was determined both in the sample plane and in a
plane normal to the aliphatic chain director (transverse plane). The linear
compressibilities range over two orders of magnitude from 0.1 to 10 m/N and are
distributed depending on their magnitude in 4 different sets which we are able
to associate with different molecular mechanisms. The largest compressibilities
(10m/N) are observed in the tilted phases. They are apparently independent of
the chain length and could be related to the reorganization of the headgroup
hydrogen-bounded network, whose role should be revalued. Intermediate
compressibilities are observed in phases with quasi long-range order
(directions normal to the molecular tilt in L_2 or L_2' phases, S phase), and
could be related to the ordering of these phases. The lowest compressibilities
are observed in the solid untilted CS phase and for 1 direction of the S and
L_2'' phases. They are similar to the compressibility of crystalline polymers
and correspond to the interactions between methyl groups in the crystal.
Finally, negative compressibilities are observed in the transverse plane for
L_2' and L_2'' phases and can be traced to subtle reorganizations upon
untilting.Comment: 24 pages, 17 figure
Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy
The diffusion of macromolecules in cells and in complex fluids is often found
to deviate from simple Fickian diffusion. One explanation offered for this
behavior is that molecular crowding renders diffusion anomalous, where the
mean-squared displacement of the particles scales as with . Unfortunately, methods such as
fluorescence correlation spectroscopy (FCS) or fluorescence recovery after
photobleaching (FRAP) probe diffusion only over a narrow range of lengthscales
and cannot directly test the dependence of the mean-squared displacement (MSD)
on time. Here we show that variable-lengthscale FCS (VLS-FCS), where the volume
of observation is varied over several orders of magnitude, combined with a
numerical inversion procedure of the correlation data, allows retrieving the
MSD for up to five decades in time, bridging the gap between diffusion
experiments performed at different lengthscales. In addition, we show that
VLS-FCS provides a way to assess whether the propagator associated with the
diffusion is Gaussian or non-Gaussian. We used VLS-FCS to investigate two
systems where anomalous diffusion had been previously reported. In the case of
dense cross-linked agarose gels, the measured MSD confirmed that the diffusion
of small beads was anomalous at short lengthscales, with a cross-over to simple
diffusion around m, consistent with a caged diffusion process.
On the other hand, for solutions crowded with marginally entangled dextran
molecules, we uncovered an apparent discrepancy between the MSD, found to be
linear, and the propagators at short lengthscales, found to be non-Gaussian.
These contradicting features call to mind the "anomalous, yet Brownian"
diffusion observed in several biological systems, and the recently proposed
"diffusing diffusivity" model
Suppression of spin-pumping by a MgO tunnel-barrier
Spin-pumping generates pure spin currents in normal metals at the ferromagnet
(F)/normal metal (N) interface. The efficiency of spin-pumping is given by the
spin mixing conductance, which depends on N and the F/N interface. We directly
study the spin-pumping through an MgO tunnel-barrier using the inverse spin
Hall effect, which couples spin and charge currents and provides a direct
electrical detection of spin currents in the normal metal. We find that
spin-pumping is suppressed by the tunnel-barrier, which is contrary to recent
studies that suggest that the spin mixing conductance can be enhanced by a
tunnel-barrier inserted at the interface
Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers
Spin pumping is a mechanism that generates spin currents from ferromagnetic
resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive
detection of the inverse spin Hall effect that transforms spin into charge
currents in non-magnetic conductors. Here we study the spin-pumping-induced
voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers
integrated into coplanar waveguides for different normal metals and as a
function of angle of the applied magnetic field direction, as well as microwave
frequency and power. We find good agreement between experimental data and a
theoretical model that includes contributions from anisotropic
magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis
provides consistent results over a wide range of experimental conditions as
long as the precise magnetization trajectory is taken into account. The spin
Hall angles for Pt, Pd, Au and Mo were determined with high precision to be
, , and ,
respectively.Comment: 11 page
Quantifying spin Hall angles from spin pumping: Experiments and Theory
Spin Hall effects intermix spin and charge currents even in nonmagnetic
materials and, therefore, ultimately may allow the use of spin transport
without the need for ferromagnets. We show how spin Hall effects can be
quantified by integrating permalloy/normal metal (N) bilayers into a coplanar
waveguide. A dc spin current in N can be generated by spin pumping in a
controllable way by ferromagnetic resonance. The transverse dc voltage detected
along the permalloy/N has contributions from both the anisotropic
magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by
their symmetries. We developed a theory that accounts for both. In this way, we
determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach
can readily be adapted to any conducting material with even very small spin
Hall angles.Comment: 4 pages, 4 figure
Magnetic Vortex Resonance in Patterned Ferromagnetic Dots
We report a high-resolution experimental detection of the resonant behavior
of magnetic vortices confined in small disk-shaped ferromagnetic dots. The
samples are magnetically soft Fe-Ni disks of diameter 1.1 and 2.2 um, and
thickness 20 and 40 nm patterned via electron beam lithography onto microwave
co-planar waveguides. The vortex excitation spectra were probed by a vector
network analyzer operating in reflection mode, which records the derivative of
the real and the imaginary impedance as a function of frequency. The spectra
show well-defined resonance peaks in magnetic fields smaller than the
characteristic vortex annihilation field. Resonances at 162 and 272 MHz were
detected for 2.2 and 1.1 um disks with thickness 40 nm, respectively. A
resonance peak at 83 MHz was detected for 20-nm thick, 2-um diameter disks. The
resonance frequencies exhibit weak field dependence, and scale as a function of
the dot geometrical aspect ratio. The measured frequencies are well described
by micromagnetic and analytical calculations that rely only on known properties
of the dots (such as the dot diameter, thickness, saturation magnetization, and
exchange stiffness constant) without any adjustable parameters. We find that
the observed resonance originates from the translational motion of the magnetic
vortex core.Comment: submitted to PRB, 17 pages, 5 Fig
Molecular Dynamics Study of the Nematic-Isotropic Interface
We present large-scale molecular dynamics simulations of a nematic-isotropic
interface in a system of repulsive ellipsoidal molecules, focusing in
particular on the capillary wave fluctuations of the interfacial position. The
interface anchors the nematic phase in a planar way, i.e., the director aligns
parallel to the interface. Capillary waves in the direction parallel and
perpendicular to the director are considered separately. We find that the
spectrum is anisotropic, the amplitudes of capillary waves being larger in the
direction perpendicular to the director. In the long wavelength limit, however,
the spectrum becomes isotropic and compares well with the predictions of a
simple capillary wave theory.Comment: to appear in Phys. Rev.
Hard-Sphere Fluids in Contact with Curved Substrates
The properties of a hard-sphere fluid in contact with hard spherical and
cylindrical walls are studied. Rosenfeld's density functional theory (DFT) is
applied to determine the density profile and surface tension for wide
ranges of radii of the curved walls and densities of the hard-sphere fluid.
Particular attention is paid to investigate the curvature dependence and the
possible existence of a contribution to that is proportional to the
logarithm of the radius of curvature. Moreover, by treating the curved wall as
a second component at infinite dilution we provide an analytical expression for
the surface tension of a hard-sphere fluid close to arbitrary hard convex
walls. The agreement between the analytical expression and DFT is good. Our
results show no signs for the existence of a logarithmic term in the curvature
dependence of .Comment: 15 pages, 6 figure
Soliton pair dynamics in patterned ferromagnetic ellipses
Confinement alters the energy landscape of nanoscale magnets, leading to the
appearance of unusual magnetic states, such as vortices, for example. Many
basic questions concerning dynamical and interaction effects remain unanswered,
and nanomagnets are convenient model systems for studying these fundamental
physical phenomena. A single vortex in restricted geometry, also known as a
non-localized soliton, possesses a characteristic translational excitation mode
that corresponds to spiral-like motion of the vortex core around its
equilibrium position. Here, we investigate, by a microwave reflection
technique, the dynamics of magnetic soliton pairs confined in lithographically
defined, ferromagnetic Permalloy ellipses. Through a comparison with
micromagnetic simulations, the observed strong resonances in the subgigahertz
frequency range can be assigned to the translational modes of vortex pairs with
parallel or antiparallel core polarizations. Vortex polarizations play a
negligible role in the static interaction between two vortices, but their
effect dominates the dynamics.Comment: supplemental movies on
http://www.nature.com/nphys/journal/v1/n3/suppinfo/nphys173_S1.htm
- …
